

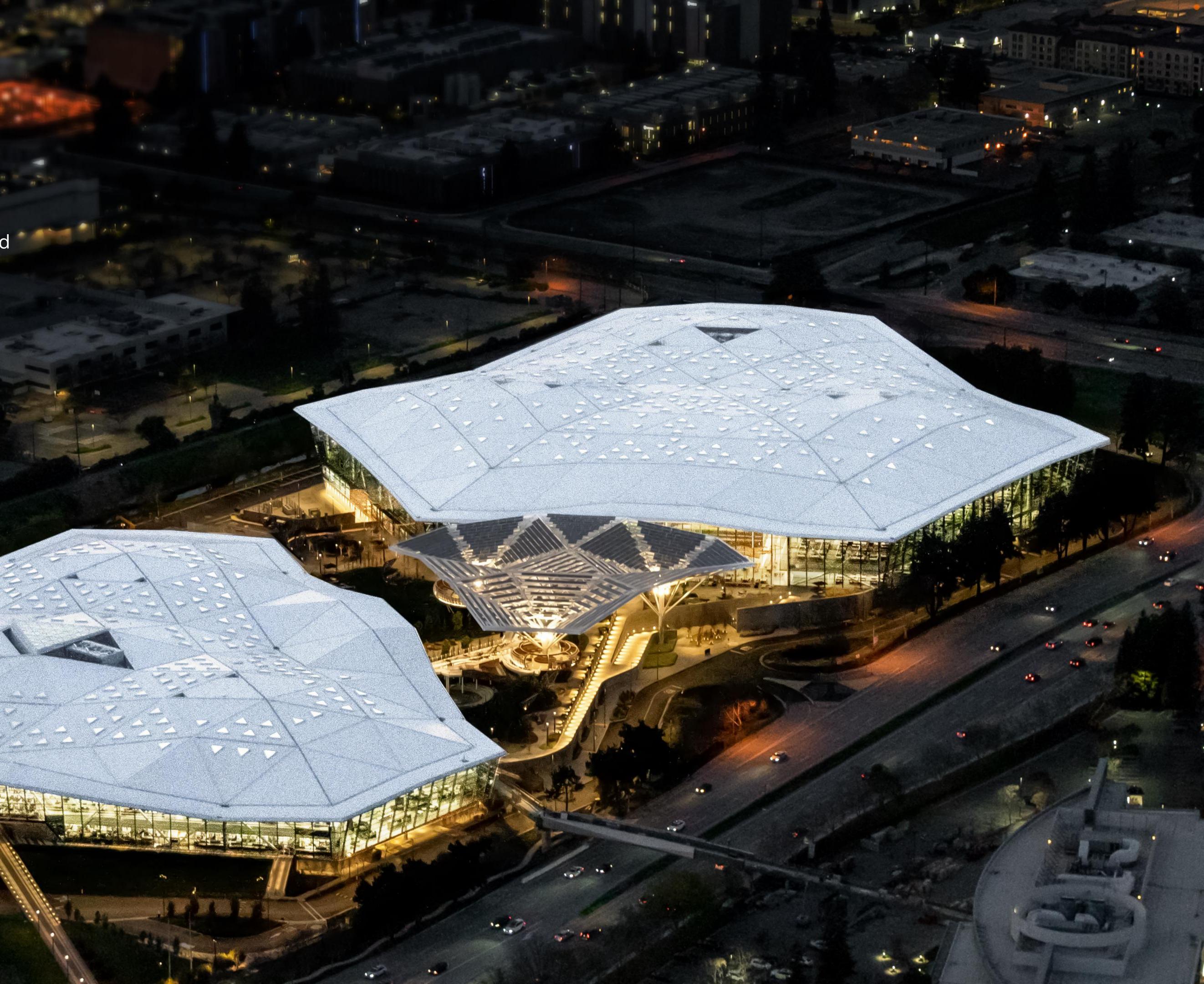
NVIDIA Transformational Use Cases by Industry

NVIDIA Partner Network July 2024

Primary Audience: NVIDIA Partner Network (NPN) partners interested in learning about NVIDIA's full lineup of accelerated computing product offerings in order to help solve industry specific needs for their customers.

This document is for reference purposes only and is NVIDIA Confidential Information. NPN partners receiving this document are not authorized to share it with any other party without NVIDIA's express written consent.

This document is not intended for marketing or sales purposes and does not constitute a commitment, guarantee, promise, or obligation to buy or sell any product. It is subject to change at any time and at NVIDIA's sole discretion.


Key ISV's referenced in this document may or may not be NVIDIA partners.

Please reach out to your NVIDIA representative with any questions and to ensure you have the latest document version.

Please read

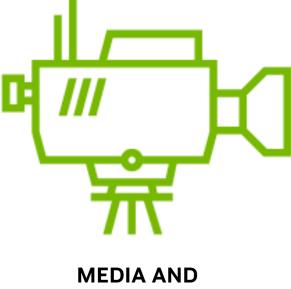
Our Body of Work

NVIDIA pioneered accelerated computing to tackle challenges no one else can solve. Our work in AI and digital twins is transforming the world's largest industries and profoundly impacting society.

Industries

Click on an icon to learn more about NVIDIA in that industry.

NVIDIA CONFIDENTIAL INFORMATION


ARCHITECTURE, ENGINEERING, CONSTRUCTION, AND OPERATIONS



FINANCIAL SERVICES

ENTERTAINMENT

ROBOTICS

MANUFACTURING AND INDUSTRIALS

RETAIL AND CPG

ENERGY

HIGHER EDUCATION AND RESEARCH

HPC / SUPERCOMPUTING

PUBLIC SECTOR (US)

PUBLIC SECTOR (GLOBAL)

TELECOMMUNICATIONS

Key NVIDIA Use Cases by Industry - Overview

Architecture, Engineering, **Construction, and Operations**

- AI, Generative AI Software Development
- Real Time Raytracing
- Reality Capture
- CAE Simulation for Engineering Disciplines
- Virtual Facility Digital Twins
- XR
- Virtualization / VDI

Financial Services

- Trading: HPC in Quantitative Finance LLM / Natural Language Processing (NLP) for Trading Research Data Processing Optimization
- Banking: Threat Detection Fraud Prevention, Compliance, Credit Risk Management Personalized Customer Service Risk Management Personalized Marketing and Customer Experience
- Payments: Transaction Fraud Prevention with Endto-End Data Science

Automotive

 Autonomous Vehicle CICD Optimization (Data Proc, AI Training, AV Replay)

• Generative AI specific: Accelerating Dev/Test of Self-Driving Vehicles, Enhancing In-Cabin User Experience, Improving Employee & Customer Service Efficiencies, Streamlining Design & Manufacturing

 Industrial Digitalization: Design / Engineering Review, Virtual Factory, Marketing & Sales Experiences, Defect and Presence / Object Detection, AV Simulation, Robotics

Healthcare and Life Sciences

BioPharma: Molecular Simulation, Structural Biology, Biomolecular AI Model Development, Generative Al Biomolecular Inference, Biomedical Imaging, Real World Evidence and Predictive Modeling

Med Tech: Medical Image Reconstruction, Medical Imaging **Device Calibration, Medical Imaging Al** Development, non-Realtime and Realtime Clinical AI Inference, Medical Visualization (AR/VR), Robotic Control, Sensor Integration

• Genomics: Single Cell and Spatial Tertiary, NGS - Genomic Secondary Analysis, Spatial Genomic Secondary Analysis, Genomic Primary Analysis

• Cybersecurity Threat Detection, SW Securing Vulnerability Analysis

\bigcirc

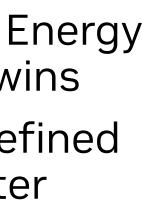
Consumer Internet

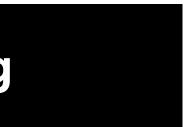
- Generative AI Platform Acceleration & Video, Text-to-Text Generation, Document Summarization, Chatbot, Cybersecurity, Autonomous Agents, Language Translation, Sentiment Analysis)
- Recommender Systems
- LLM Training
- Multimodal Training

Higher Education and Research

- DNA & RNA Genomic Sequencing Analysis
- Weather and Climate Prediction
- Quantum Research
- GPU as-a-Service
- Robotics
- Campus IT "Al-as-a-Service"

Optimization (Text-to-Image, Text-to-


Energy


- Subsurface Understanding: Reservoir Simulation, Seismic Processing, Geoscience Interpretation and Visualization
- Surface Operations: Renewable Energy Forecasting, Industrial Digital Twins
- Power and Utilities: Software-Defined Smart Grid, Utility Contact Center Agent Assist, Utility Substation Security and Visual Inspection

HPC / Supercomputing

- Respond to Pandemic Scale Virus
- Digital Twin for Fusion Reactor with Integrated Research Infrastructure
- Converged Models for Advanced Material Science
- Quantum Computing

Key NVIDIA Use Cases by Industry - Overview

Manufacturing and Industrials

- Generative AI for Technician Support
- Intelligent Automation for Internal Product Innovation and Design Teams
- Faster Product Design, Full-fidelity Visualization and Real-time Photorealistic Rendering
- Virtual Factory

- Vision-based Automation & Safe Autonomous Systems
- Industrial Automation Robotics
- Al and HPC-driven Field Ops & Service
- Accelerated Engineering Simulation
- XR for Design, Design Reviews, Global Collaboration

Retail and CPG

- **Omnichannel: Hyper Personalization** and Generative AI, Generative AI Employee Advisor, Generative Al Shopping Advisor
- Automated Product/Marketing Content Generation, Automated Order Taking, Optimize End-to-End Data Science Pipeline
- Intelligent Stores: Loss Prevention to Avoid Theft, Organized Retail Crime Theft Prevention, Store Analytics
- Intelligent Supply Chain: Inventory Management Optimization, Last Mile Delivery / Routing Optimization
- Insider Threat Detection

NVIDIA CONFIDENTIAL INFORMATION

Media and Entertainment

• Film & Television: AI Foundry Services, Video AI, NLP/ASR, Data Analytics/ Recommenders/Personalization • Live Media: Software-Defined Broadcast, Video AI, NLP/ASR, Data Analytics/Recommenders/ Personalization • Gaming: Non-Player Characters, AI to Accelerate Game Asset Dev, Accelerate

Code / Story Dev, Virtualization, Enable High Memory Workloads • AdTech: Al Agents, Gen Al Ad & Marketing Content Creation, Apps & Services for 3D Content Supply Chain/ Consumer Interaction/Production Automation, Accelerated DS & Al

Robotics

 Robotics Generative AI Generic Autonomous Robots

Robotics CICD Pipeline Acceleration

Public Sector (US)

- Enhanced Command & Control/ Decision Dominance/Enterprise Knowledge Discovery, Customized & Streamlined Public Service Delivery, Intelligent Automation – Order Management, Multi-Domain Modeling and Simulation
- GeoSpatial and GeoINT, Anomaly Detection and Threat Detection, Virtual Factory, Air Traffic Management Systems Radar and Signal Processing, Autonomous Systems Digital Proving Grounds, Resource Routing for Predictive Maintenance, Quantum Simulation

Smart Cities and Spaces

- Smart Safety and Security
- Operational Efficiency and Automation
- Public Agency Data Analytics and Intelligent Citizen Services
- Intelligent Traffic Management
- LVM Video & Image Understanding

Public Sector (Global)

- Sovereign Foundation Models
- Radar and Signal Processing
- Digital Twins / Simulation
- GeoSpatial and GeoINT
- Quantum Computing

Telecommunications

- Generative AI Enhanced Customer Experience
- Generative AI Powered Network Operations
- Generative AI Enhanced Cognitive Search
- Regional / Sovereign Al Factories
- Data Processing Optimization
- Open Switching Fabric
- Cloud Infrastructure Acceleration

Architecture, Engineering, Construction, and Operations Use Cases

Use Case / Transformational Conversation

Use Case: AI, Generative AI Software Development

Benefit: Accelerated development workflow, scalable full stac solution on prem and cloud

(Understanding Diffusion Models – Essential Guide AEC)

- NVIDIA AI Enterprise full-stack AI development, training, inference, and deployment tools
- Al supercomputers, on-prem and cloud

Use Case: Real Time Raytracing

Benefit: Better informed decision-making, reduced errors, les wasted (Studio 4D)

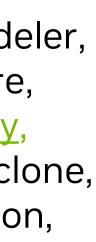
- Real-time photorealistic visualization during the design pr
- Faster iteration on creation of photorealistic renderings for internal and external communications

Use Case: Reality Capture

Benefit: Visualize construction sites and as-built environmen⁻ photogrammetry and LIDAR <u>reality capture</u>

- Process massive point clouds
- Accelerated computation with CUDA-based features

Use Case: CAE Simulation for Engineering Disciplines


Benefit: Accelerated time to results of HPC-based CAE simul (CFD, FEA, DEM) for deep understanding of the forces of nature applied to building and infrastructure designs in the digital pr

- Smaller footprint and lower operational cost than CPU-onl solutions
- Meaningfully faster compute then CPU-only solutions

Accelerating Transformation in Architecture, Engineering, Construction, and Operations

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
ack	Construction Management Design Optimization Operations Predictive Analytics Real Estate Generative AI: Visual Design	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>RAPIDS (cuDF)</u> <u>NVIDIA AI Workbench, blog</u> <u>Picasso</u>	Accelerated Computing Solutions Accelerated Networks DGX Cloud RTX-powered AI Workstations	Autodesk Bentley EvolveLab Hexagon OpenSpace Reconstruct Trimble
ess time orocess for	Construction planning Design reviews Design Visualization Marketing Public communications Rendering / Ray Tracing	<u>NVIDIA AI Enterprise</u> <u>CUDA, CUDA-X</u> <u>RTX technology</u>	<u>GPU Cloud Computing</u> <u>RTX visual computing platform</u>	<u>Bentley LumenRT</u> Chaos <u>V-Ray</u> <u>Enscape, Vantage</u> Epic <u>Twinmotion</u> <u>Lumion</u> <u>Unreal Engine</u>
ent with	Construction Progress LIDAR Monitoring Photogrammetry Quality and Safety Inspection Site Layout	<u>NVIDIA AI Enterprise</u> <u>CUDA, CUDA-X</u> <u>Virtual GPU (vGPU)</u> <u>RTX technology</u>	<u>GPU Cloud Computing</u> <u>RTX visual computing platform</u>	Bentley iTwin Capture Mode Epic RealityCapture, <u>ESRI ArcGIS Reality</u> , Hexagon Leica Cyclo Matterport, Nubigor Pix4D, 3DFLOW
ulation iture process only	Computational Fluid Dynamics Environmental Simulation Finite Element Analysis Lighting Analysis Structural Engineering Ventilation / Thermal Comfort	<u>NVIDIA AI Enterprise</u> <u>CUDA, CUDA-X</u> <u>Virtual GPU (</u> vGPU) <u>RTX technology</u>	Accelerated Computing Solutions Accelerated Networks DGX Cloud GPU Cloud Computing RTX visual computing platform	<u>Ansys, Altair</u> <u>Siemens</u> Simulation, <u>Dassault Systèmes</u> <u>Simulia,</u> SimScale, OpenFoan <u>Rescale</u>

Use Case / Transformational Conversation

Use Case: Virtual Facility Digital Twins

Benefit: Develop USD-based tools, applications, and data pipe to support robust data collaboration across dispersed teams multiple design applications, real-time photorealism, and simu (UrsaLeo, Houseal Lavigne, OutdoorLiving3D, Woods Bagot, Si Lab)

- OpenUSD data pipeline
- Real-time raytracing and PhysX simulation
- Robust customization tools

Use Case: XR

Benefit: Better informed decision-making, reduced errors, de familiarity with digital building and construction site (Lake|Flato, Theia Interactive, Theia Interactive Case Study)

- Immersive design reviews
- Most efficient training for construction procedures •

Use Case: Virtualization / VDI

Benefit: Enhanced mobility for productivity and global collabo across remote teams; Data / IP security (<u>HFA</u>)

- Huge models and datasets •
- Data / IP security for business continuity and disaster reco
- Fast on- and off-boarding of project team members

Accelerating Transformation in Architecture, Engineering, **Construction, and Operations**

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
pelines s using nulation <u>SiBORG</u>	City Simulation City Operations City Visualization Digital Twins IoT Smart Cities	Omniverse Enterprise RTX technology	<u>Graphics Delivery Network (GDN)</u> Omniverse Cloud OVX <u>RTX Systems</u> <u>RTX visual computing platform</u>	Autodesk Bentley LumenRT Hexagon Siemens Trimble
deep	Construction planning Design Review Marketing Public communications Training	<u>CloudXR</u> <u>VRWorks</u> <u>RTX technology</u>	<u>GPU Cloud Computing</u> <u>RTX visual computing platform</u>	Chaos <u>Enscape</u> Epic <u>Unreal Engine</u> <u>Twinmotion</u> <u>Lumion</u> <u>Unity</u>
boration	VDI	<u>Virtual GPU (vGPU)</u> <u>RTX virtual Workstation (vWS)</u>	<u>Accelerated Networks</u> <u>GPU Cloud Computing</u> <u>RTX visual computing platform</u>	<u>Citrix</u> HP Anywhere/Teradi <u>Nutanix</u> <u>VMware</u>
covery				

Automotive Use Cases

Use Case / Transformational Conversation

Use Case: Autonomous Vehicle CICD - Data Proc Optimization Benefit: 50% reduction in manual labeling efforts, 30% speed labeling throughput

AV Data Factory Optimization

- Faster labeling throughput \bullet
- AV data preparation image processing speed-ups

Use Case: Autonomous Vehicle CICD - AI Training Model Optimization

Benefit: Achieve 3x or greater training speed-up from Ampere Hopper

AV Training Optimization

- Faster AV AI training at scale
- Train, Adapt, Optimize Models in hours vs. months

Use Case: Autonomous Vehicle CICD – AV Replay Optimizatio **Benefit**: >6x speed-up of replay

AV Replay Optimization

- AV Replay on CPU is slow
- Triton enables optimal GPU inferencing

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
tion ed up in	Computer Vision / Video Analytics Data Analytics & Processing Data Science Synthetic Data Generation	<u>CV-CUDA</u> <u>NVIDIA AI Enterprise</u> <u>DALI</u> <u>RAPIDS (cuDF)</u> <u>TAO (Train, Adapt, Optimize)</u> <u>TensorRT</u> <u>Triton</u>	Accelerated Computing Solutions Data Center DGX Cloud GPU Cloud Computing	<u>Kinetica</u> <u>Run:Al</u> <u>Snowflake</u> <u>Weights & Biases</u>
ere to	Computer Vision / Video Analytics Data Analytics & Processing Data Science Synthetic Data Generation Video Streaming	<u>NVIDIA AI Enterprise</u> <u>cuDNN</u> <u>DALI</u> <u>Model Training DLFW – PyTorch,</u> <u>TensorFlow</u> <u>TAO</u> (Train, Adapt, Optimize)	Accelerated Computing Solutions Accelerated Networks Data Center DGX Cloud GPU Cloud Computing	<u>ClearML</u> <u>Dataiku</u> <u>Domino Data Lab</u> <u>Run:Al</u> <u>Weights & Biases</u>
tion	AV Replay Computer Vision / Video Analytics Data Analytics / Processing Data Science Video Streaming	NVIDIA AI Enterprise DeepStream TensorRT Triton VPF	Accelerated Computing Solutions Data Center DGX Cloud GPU Cloud Computing	Kognic



Use Case / Transformational Conversation

Use Case: Accelerating Development & Testing of Self-Drivi

Benefit: End-to-end fused world models training on video dat LLM

NVIDIA Research Wins CVPR Autonomous Grand Challenge for Driving)

- Training custom foundation model or adapting existing model
- Cloud inference
- Embedded deployment leveraging NVIDIA DRIVE

Use Case: Enhancing In-cabin User Experience

Benefit: Leveraging LLMs and VLMs for enabling AI cockpit, 4 inference performance for LLM's using TRT-LLM + H100, spee cost with faster pipelines, faster time to insight

- Knowledge Co-pilot
- Chatbot Al Workflow: <u>Generative Al-Powered Chatbots Using RAG</u>
- Cabin, driver, and environment monitoring and guidance
- Data Intelligent Vehicle Owners Manual, Intelligent Vehicle

Use Case: Improving Employee and Customer Service Efficie Benefit: Gen Al are 2.6X more likely to increase revenue by 1 save \$100s Ms in costs per customer, \$100s Ms in Quality cos

- Customer interactions such as contact centers
- Al Workflows: <u>Generative Al-Powered Chatbots Using RAG</u>, for Customer Service
- Text generation such as Corporate E-mail, Public Relations
- Code generation such as component design, requirements

Use Case: Streamlining Design and Manufacturing Processes

Benefit: Digital twins, simulation and immersive experiences

- Call Visual Generative AI APIs into 3D Applications
- Build Custom LLM Application for 3D Workflows

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
ving Vehicles lata leveraging for End-to-End model	Computer Vision / Video Analytics Data Analytics & Processing Data Science Generative Al Synthetic Data Generation	NVIDIA AI Enterprise DALI, cuDNN Model Training DLFW – PyTorch, TensorFlow NeMo, Riva, TAO, TensorRT, Triton, NVIDIA AI Workbench, blog, VPF NVIDIA DRIVE, DRIVE OS	Accelerated Computing Solutions Data Center DGX Cloud DGX NeMo LLM Solution Brief DRIVE AGX GPU Cloud Computing RTX-powered Al Workstations	
4.6x better eedup lowers	Computer Vision / Video Analytics Generative AI: Reasoning Retrieval/RAG Speech AI /NLP Guardrails	NVIDIA AI Enterprise NVIDIA NIMs, ACE NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG, RAPIDS (cuDF, cuGraph, cuML), RAPIDS Accelerator for Apache Spark, Riva, TensorRT, TensorRT-LLM,Triton Picasso	Accelerated Computing Solutions Data Center DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered AI Workstations	<u>Cerence video</u> <u>Dataiku</u> <u>Soundhound</u>
iencies 10% or more, ost reduction 6, <u>AI Chatbot</u> is ts validation	Call Center Digital Assistant Engineering Knowledge Base Generative AI: Reasoning Retrieval/RAG Speech AI /NLP Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>Riva</u> <u>TRT, TRT-LLM , Triton</u> <u>Picasso</u>	Accelerated Computing Solutions Data Center DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing	Dataiku
Ses S	Digital Twin, Generative AI, Rendering / Ray Tracing Simulation / Modeling / Design, Synthetic Data Generation, Virtualization	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>Virtual GPU (vGPU)</u> <u>Omniverse Enterprise</u> <u>RTX technology</u>	Accelerated Computing Solutions Omniverse Cloud OVX RTX-powered AI Workstations	

Use Case / Transformational Conversation

Use Case: Design/Engineering Review

Benefit: Develop USD-based tools, applications, and data pipe to accelerate design and engineering reviews

Use Case: Virtual Factory

Benefit: Develop USD-based tools, applications, and data pipe to accelerate and unlock new possibilities (BMW, Mercedez Benz, Continental, Optimizing Intralogistics

Talk to Your Supply Chain Data Using NIM)

- Factory planning
- Process simulation
- Robotics training
- Operations
- AI Workflow: Multi-Camera Tracking

Use Case: Marketing and Sales Experiences

Benefit: Reduce configurator development time by months / prepare data once and deliver for multiple outputs, accelerate content creation time by up to 40%. (Nissan, Katana Studio)

- Digital Twin
- Automation of Content Supply Chain
- Automotive Marketing, Car Configurator
- Aggregated and Accessible Automotive Marketing Pipeline


NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
pelines	Digital Twin Rendering / Ray Tracing Simulation / Modeling / Design Virtualization	<u>Omniverse Cloud</u> <u>Omniverse Enterprise</u> <u>RTX technology</u> <u>Virtual GPU (vGPU)</u>	Accelerated Computing Solutions Omniverse Cloud OVX RTX Systems	<u>Altair</u> <u>Ansys</u> <u>Dassault Systèmes</u> (CATIA) <u>Hexagon</u> <u>ParaView</u> <u>Rescale</u> <u>Siemens</u>
pelines s blog,	Data Aggregation Digital Twin Optimizer Engine Rendering / Ray Tracing Simulation / Modeling / Design USD Data Pipeline Virtualization	<u>Metropolis</u> microservices <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>cuOpt NIM</u> , <u>Modulus</u> , <u>Virtual GPU (vGPU)</u> <u>Omniverse Cloud</u> <u>Omniverse Enterprise</u> <u>Isaac Sim</u> , <u>Omniverse Replicator</u> Reality Capture <u>RTX technology</u>	Accelerated Computing Solutions Microsoft Azure, Omniverse Cloud OVX RTX Systems RTX visual computing platform	Autodesk (FlexSim Bentley (MicroStat Dassault Systèmes (DELMIA, ENOVIA, CATIA), Hexagon, ipolog, Rockwell Automation, Sieme (Tecnomatix, Teamcenter, NX), SyncTwin, Visual Components
/ te nes	AR / VR / XR Cloud Streaming Digital Twin Rendering / Ray Tracing Simulation / Modeling / Design Virtualization	<u>CloudXR</u> <u>Omniverse Cloud</u> <u>Omniverse Enterprise</u> <u>USD-Graphics Delivery Network</u> (GDN) Publisher <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	Accelerated Computing Solutions Omniverse Cloud OVX RTX-powered Spatial Framework RTX Systems	Dassault Systèmes (3DEXCITE) OpenXR SteamVR Unity Unity Unreal Engine

<u>es</u>

Use Case / Transformational Conversation

Use Case: Defect and Presence, Object Detection with Syntl **Data Generation**

Benefit: Maximize designer productivity, better informed deci making, and process efficiency

Digital Twin - Design & Engineering

Use Case: AV Simulation

Benefit: Reduce road testing and improve AV stack performant

(NVIDIA Research Wins CVPR Autonomous Grand Challenge f End-to-End Driving)

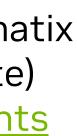
• Digital Twin – Autonomous Vehicle Sensor Simulation

Use Case: Robotics

Benefit: Maximize design, test, and training of AI-based robot (Vision AI tech blog)

- <u>Factory Digital Twin</u> Smart Factory Robotics: Layout, Kinematics, Behavior Synthetic Data Generation
- Train robots with the optimized routes

NVIDIA Accelerated Computing Full-Stack —


	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
ecision-	Digital Twin Rendering / Ray Tracing Simulation / Modeling / Design Synthetic Data Generation Virtualization	Omniverse Cloud Omniverse Enterprise Omniverse Replicator DRIVE Replicator (Limited EA) <u>RTX technology</u> RTX virtual Workstation (vWS) Virtual GPU (vGPU)	Accelerated Computing Solutions Omniverse Cloud OVX	Ansys Rescale Siemens, SynthAl
ance <u>for</u>	Synthetic Data Generation E2E Verification & Validation	<u>Omniverse Cloud</u> <u>Omniverse Enterprise</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	Accelerated Computing Solutions Accelerated Networks Omniverse Cloud OVX	<u>Ansys</u> <u>Carla</u> <u>dSPACE</u> <u>Foretellix</u> <u>MathWorks</u> <u>Morai</u>
ots	Digital Twin Edge Computing Optimizer Engine Rendering / Ray Tracing Simulation / Modeling / Design Synthetic Data Generation Virtualization	<u>Metropolis</u> microservices <u>NVIDIA AI Enterprise</u> <u>cuOpt NIM</u> <u>Virtual GPU (vGPU)</u> <u>Omniverse Cloud</u> <u>Omniverse Enterprise</u> <u>Isaac Sim, Isaac Gym</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	Accelerated Computing Solutions Omniverse Cloud OVX	ROS <u>Siemens</u> Tecnomat (Process Simulate) <u>Visual Components</u>

Consumer Internet Use Cases

Accelerating Transformation in Consumer Internet

Use Case / Transformational Conversation

Use Case: Generative AI Platform Acceleration & Optimization **Benefit:** Generative AI – Optimize # images, video, and text generated per unit of cost; maximize output per unit of comp

- Text-to-Image, Text-to-Video, Text-to-Text Generation
- Document Summarization, Chatbot, Cybersecurity, Autonomous Agents, Language Translation, Sentiment An
- Enabling Generative AI platforms to reduce time to marke⁻ accelerate new product offering development and offer differentiated value in the market

Use Case: Recommender Systems

Benefit: Enabling customers to accelerate and optimize the efficiency and accuracy of their core AI workloads

 Improving customer outcomes for use cases including pro advertising, streaming media, search optimization, social n feeds based on user profiles

Use Case: Training

Frontier LLM Training

• General purpose, foundation models

Vertical LLM Training

• Application specific models

Use Case: Multimodal Training

Benefit: Extending the accuracy and usability of traditional LI training models

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
tion npute analysis at,	Generative AI: Reasoning Retrieval/RAG Guardrails Models: ChatGPT, BARD, Pi, CoPilot, AI21, BingChat, Perplexity, MidJourney, Dall-E, Stable Diffusion, Imagen	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS TRT-LLM Triton	Accelerated Computing Solutions Accelerated Networks Data Center DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered Al Workstations	Databricks Hugging Face Google Cloud Meta Mistral Al OpenAl Snowflake
roduct I media	Generative Al: Retrieval/RAG Speech Al/NLP Guardrails Models: RNN, CNN, LSTM, KNN, GAN	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>RAPIDS</u> <u>TensorRT</u> <u>Triton</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered Al Workstations	<u>Databricks</u> <u>Snowflake</u>
	Generative AI: Retrieval/RAG Guardrails Frontier Models: GPT, Llama, Claude, NeMo, Mixtral, Bloom, Palm, Vertical Models: BloombergGPT, Weaviate, customer proprietary	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>RAPIDS</u> <u>TensorRT</u> <u>Triton</u> <u>NVIDIA AI Workbench, blog</u>	Accelerated Networks DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered AI Workstations	<u>Databricks</u> <u>Hugging Face</u> <u>Snowflake</u> <u>Weights & Biases</u>
LLM	Generative Al: Retrieval/RAG Guardrails Models: Gemini, Inworld, ImageBind	<u>NVIDIA Al Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u>	Accelerated Computing Solutions Data Center DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered Al Workstations	<u>Databricks</u> <u>Hugging Face</u> <u>Snowflake</u>

Energy Use Cases

Accelerating Transformation in Energy – Subsurface Understanding

Use Case / Transformational Conversation

Use Case: Reservoir Simulation

Benefit: Optimize well placement, optimize production, and drive higher field-planning productivity and profitability (Stone Ridge Technology benchmark study, Case Study, GTC24 Panel: <u>ExxonMobil</u>, <u>Shell</u>, <u>SLB</u>, <u>Petrobras</u>)

• <u>HPC</u> emerging workloads in carbon capture and storage unlock opportunities to reduce the carbon footprint from traditional oil and gas operations

Use Case: Seismic Processing

Benefit: Optimize seismic algorithms for exploration, production, and CCUS monitoring (GTC talks: <u>KAUST</u>, <u>BP</u>, <u>Saudi Aramco</u>, <u>Shell</u>, <u>Petrobras</u>)

- Leverage AI-enhanced 3D volumetric visualization frameworks and HPC.
- This includes full waveform inversion (FWI) and reverse time migration (RTM), critical seismic imaging workflows.
- Generative AI assistant for seismic data processing workfle

Use Case: Geoscience Interpretation and Visualization

Benefit: Visualization for optimized geological interpretation

			l Computing Full-Stack —	
	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
J	HPC Simulation / Modeling Physics-ML	Energy SDK HPC SDK (cuFFT, cuBLAS) NVIDIA AI Enterprise CUDA Modulus RAPIDS (cuDF, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Virtual GPU (vGPU)	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Energy DGX Cloud GPU Cloud Computing	Computer Modelling Group (CM <u>SLB</u> <u>Stone Ridge Technole</u> <u>Rescale</u>
flow	Generative AI: Reasoning Retrieval/RAG HPC Physics-ML	Energy SDK HPC SDK (cuFFT, cuBLAS) NVIDIA AI Enterprise NVIDIA NIMs, Modulus, NeMo Retriever, RAG RAPIDS (cuDF, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Energy DGX Cloud GPU Cloud Computing	AspenTech Rescale Shearwater SLB Viridien (CGG)
	RTX Visualization HPC Rendering / Ray Tracing Simulation / Modeling	Virtual GPU (vGPU)	RTX Systems RTX visual computing platform	AspenTech Halliburton SLB S&P Global Commodity Insights

Accelerating Transformation in Energy – Surface Operations

Use Case / Transformational Conversation

Use Case: Renewable Energy Forecasting

Benefit: Maximize reliable production and supply of clean ene (Siemens Gamesa, Gigastack, Skycatch, Siemens Energy tech Vision AI tech blog, <u>HPC explained</u>)

- **Climate Simulation**
- Weather Prediction
- Wake Optimization

Use Case: Industrial Digital Twins

Benefit: Reduce unplanned downtimes and protect worker he and safety

(Honeywell, Gurobi Optimization GTC talk & blog, Optimizing Intralogistics blog, Talk to Your Supply Chain Data Using NIM, blog, <u>HPC explained</u>)

- Autonomous Operations
- Predictive Maintenance
- Industrial Process Simulation
- Maintenance and Operations Support

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
nergy cholog,	Data Science Edge Computing Generative AI: Reasoning Retrieval/RAG Guardrails HPC Physics-ML Simulation / Modeling Virtualization	Metropolis microservicesNVIDIA AI Enterprise NVIDIA NIMs, Modulus, NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS (cuDE / cuIO, cuML) Virtual GPU (vGPU)Omniverse EnterpriseRTX technology RTX virtual Workstation (vWS)	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Energy DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing OVX RTX Systems	AVEVA (Schneider Electric) CPFD Hitachi Energy Kinetica Rescale Siemens Energy Sygnia TempoQuest
health , <u>tech</u>	Data Science Edge Computing Generative AI: Reasoning Retrieval/RAG Guardrails HPC Optimizer Engine Physics-ML Rendering / Ray Tracing Simulation / Modeling Virtualization	Metropolis microservices <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIMs, cuOpt NIM,</u> <u>Modulus,</u> <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>RAPIDS (cuDF, cuIO, cuML)</u> <u>Virtual GPU (vGPU)</u> <u>Omniverse Enterprise</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Energy DGX Cloud DGX NeMo LLM Solution Brief Jetson OVX RTX Systems	AspenTech AVEVA (Schneider Electric) Bentley Systems Beyond Limits CPFD Dassault Systèmes Domino Data Lab GE Vernova Honeywell Rescale Rockwell Automati Siemens Energy

<u>es</u>

tion

Accelerating Transformation in Energy – Power and Utilities

Use Case / Transformational Conversation

Use Case: Software-Defined Smart Grid

Benefit: Manage distributed energy resources (DERs) using A the grid-edge for enhanced resiliency and reliability (Utilidata-UMTRI, GTC24 talks: Utilidata & Hubbel Inc, EPRI)

- Grid Simulation
- Grid Management
- Grid-Edge Distributed Intelligence

Use Case: Utility Contact Center Agent Assist

Benefit: Support contact center agents with generative AI to improve customer resolution time and experience (AWS Case Study Minerva CQ)

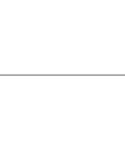
- Real-time dialogue suggestions
- Customer sentiment analysis
- Optimal customer experience journey •

Use Case: Utility Substation Security and Visual Inspection

Benefit: Proactively monitor and secure critical grid infrastruc with vision AI

(Multi-camera Tracking, Vision AI tech blog)

- Substation Cyber/Physical Intrusion Detection
- Substation Predictive Maintenance
- Substation Access Control
- Visual Inspection of Utility infrastructure
- Field Technician Health and Safety
- Al Workflow: <u>Multi-Camera Tracking</u>


NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
Alat	Data Analytics / Data Processing Data Science Edge Computing Simulation / Modeling	NVIDIA AI Enterprise CUDA, CUDA-X Fleet Command	<u>Jetson</u>	DigSilent Utilidata
20	Data Analytics / Data Processing Data Science Generative AI: Reasoning Retrieval/RAG Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>CUDA, CUDA-X</u> <u>RAPIDS</u> <u>Riva</u>	DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered Al Workstations	<u>Minerva CQ, blog</u>
) ucture	Data Analytics / Data Processing Data Science Edge Computing	NVIDIA AI Enterprise Morpheus Metropolis microservices	Jetson	<u>IronYun</u> <u>Noteworthy.ai</u>

Financial Services Use Cases

Accelerating Transformation in Financial Services – Trading

Use Case / Transformational Conversation

Use Case: HPC in Quantitative Finance

Benefit: Maximize performance, speed-up and power efficie (GTC24 talks: JP Morgan Chase, Hudson River Trading)

- Expand scope and use of accelerated computing for HP •
- Quant Finance, Risk Management, Systemic Algorithmic • Trading
- Price Discovery, Risk Valuation & Simulation, Portfolio Allocation, Algorithmic trading, Model Backtesting, Arbit

Use Case: LLM / Natural Language Processing (NLP) for Tra Research

Benefit: Expand scope and use of accelerated computing in LLM workloads

(GTC24 talks: <u>Nasdaq</u>, <u>Walleye Capital</u>, <u>Cohen & Steers</u>, <u>Gen</u> Al in FSI with WAIFC, State of Al in Financial Services, Financial Analysis with NIM tech blog)

- Trading Research •
- Idea Generation
- Al Workflow: Generative Al-Powered Chatbots Using RAC

Use Case: Data Processing Optimization

Benefit: Speedup lowers cost with faster time to insight; im Data Science accuracy of models, productivity, and reduce of

Accelerated data processing in the Data Prep, ETL

- Market, Trade, Fundamental •
- Pre-Calcs (Price & Risk), Research, Model Backtesting, \bullet Systemic Trading

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVNVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
ciency PC ic	AI/ML Counterparty Risk Monte Carlo Risk Simulations Market Risk Market Generator and Simulator Simulation / Modeling	<u>HPC SDK</u> <u>CUDA-X Math Libraries</u> (<u>cuBLAS</u> , <u>cuFFT</u> , <u>cuRAND</u> , cuSolver)	Accelerated Computing Solutions Accelerated Networks BlueField-3 DPUs Data Center DGX BasePOD for Financial Services -> DGX SuperPOD DGX Cloud GPU Cloud Computing	Bloomberg CME FactSet KX LSEG Murex Nasdaq S&P Global
Frading in ML / enerative ncial	Data Analytics / Processing Data Science Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails ML & LLM Algorithms	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Riva NVIDIA AI Workbench, blog	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Financial Services -> DGX SuperPOD DGX Cloud GPU Cloud Computing RTX-powered AI Workstations	Bloomberg CME Dataiku FactSet Kinetica KX LSEG Murex Nasdaq S&P Global
improve e cost	Alternative Data Merge Cleansing (dedupe, extract HTML, compress) Data Analytics / Processing Data Science Normalization	NVIDIA AI Enterprise RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool	Accelerated Computing Solutions Data Center DGX BasePOD for Financial Services-Run:ai, DGX SuperPOD DGX Cloud GPU Cloud Computing RTX-powered AI Workstations	<u>Cloudera</u> <u>Dataiku</u> <u>Domino Data Lab</u> <u>Kinetica</u> <u>Run:ai</u> <u>Snowflake</u>

Accelerating Transformation in Financial Services – Banking

Use Case / Transformational Conversation

Use Case: Threat Detection

Benefit: Identify threats and anomalies to identify and respon quickly (insider threat detection and data breach)

AI Powered Banking – Cybersecurity

- Monitor transactions, account activity, in real-time
- Monitor all users, devices, and data across the network
- Data protection
- AI Workflows: Digital Fingerprinting, Spear Phishing Detec

Use Case: Fraud Prevention, Compliance, Credit Risk Manage

Benefit: Better meet regulatory guidance and compliance requirements; improve Data Science productivity and reduce (BNY Mellon, State of AI in Financial Services)

AI Powered Banking - Intelligent Automation and Cost Reduct

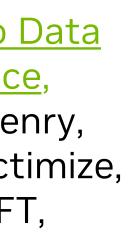
- Automate fighting financial crime (Anti-Money Laundering AML / Know Your Customer - KYC)
- Improve credit risk modeling / optimizing reserves
- Risk Management, Fraud Detection, Cost Reduction

Use Case: Personalized Customer Service

Benefit: Deliver more personalized and better customer experiences

(BNP Paribas GTC talk, State of AI in Financial Services)

AI Powered Banking - Customer Service


- ChatBot assisted Call Center interactions
- Recommendation systems
- AI Workflows: Intelligent Virtual Assistant, Generative AI-Powered Chatbots Using RAG, AI Chatbot for Customer Se

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's	
ond	Cybersecurity / Fraud Data Analytics / Processing Detection Data Science Edge Computing Simulation / Modeling	<u>NVIDIA AI Enterprise</u> <u>Morpheus</u> <u>RAPIDS (cuDF, cuGraph, cuML)</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark, Accelerated Spark</u> <u>Analysis Tool</u>	Accelerated Computing Solutions BlueField-3 DPUs Data Center DGX BasePOD for Financial Services -> DGX SuperPOD DGX Cloud GPU Cloud Computing RTX-powered AI Workstations	<u>Crowdstrike,</u> <u>Dataiku, Domino D</u> <u>Lab. FeatureSpace</u> Finestra, Jack Hen <u>Kinetica</u> , Nice Acti Quantifind, SWIFT Temenos	
gement e cost ction ng -	Cybersecurity / Fraud Detection Data Analytics / Processing Data Science Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails Simulation / Modeling	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Riva Deep Graph Library (DGL)	Accelerated Computing Solutions Data Center DGX BasePOD for Financial Services - Run:ai, DGX SuperPOD DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered AI Workstations	ComplyAdvantage Dataiku, Domino D Lab, FeatureSpace Instabase, Kinetica Nice Actimize, Run Securiti.ai, SWIFT	
= Service	Computer Vision / Video Analytics Data Science Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails Recommenders / Personalization	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s <u>NeMo Retriever</u> , <u>Guardrails</u> , <u>Guardrails blog</u> , <u>RAG</u> <u>Merlin</u> <u>Riva</u> <u>Triton</u> <u>RTX technology</u>	Accelerated Computing Solutions Data Center DGX Cloud DGX NeMo LLM Solution Brief DGX BasePOD for Financial Services -> DGX SuperPOD GPU Cloud Computing OVX RTX-powered AI Workstations	Dataiku Domino Data Lab H2O.ai Kore.ai	

Accelerating Transformation in Financial Services – Banking

Use Case / Transformational Conversation

Use Case: Risk Management

Benefit: Speed up front/back-office functions by using AI; im Data Science accuracy of models, productivity, and reduce cos (<u>PingAn GTC24 talk</u>, <u>State of AI in Financial Services</u>)

AI Powered Banking – Speedup Front/Back Office

- Underwriting (Credit, Products) (Front Office)
- Cash Management Forecasting (Back Office)
- Customer Behavior Prediction (Front Office)

Use Case: Personalized Marketing and Customer Experience

(Capital One GTC24 talk, State of AI in Financial Services)

AI Powered Banking - AI-Enabled Marketing

- Incorporate multiple data streams into recommendation models to feed Generative AI models that generate text, images, emails, marketing creative
- Create an enhanced personalized experience for the custo
- Personalized recommendations for cross-selling additional products and services

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
mprove	Data Analytics / Processing Data Science Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG Merlin RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Riva Triton	Accelerated Computing Solutions Data Center DGX BasePOD for Financial Services - Run:ai, DGX SuperPOD DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered AI Workstations	Dataiku Domino Data Lab H2O.ai Instabase Kinetica Run:ai, Run:ai Webi
:e hat tomer	Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails Recommenders / Personalization	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>Merlin</u> <u>Riva</u>	Accelerated Computing Solutions Data Center DGX BasePOD for Financial Services -> DGX SuperPOD DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered AI Workstations	<u>Dataiku</u> <u>Domino Data Lab</u> <u>H2O.ai</u> SWIFT

Accelerating Transformation in Financial Services – Payments

Use Case / Transformational Conversation

Use Case: Transaction Fraud Prevention with End-to-End Da Science

Benefit: Improve Data Science productivity and reduce cost; optimize Throughput (offline models) and Latency (online mo (American Express, bung, PayPal, State of AI in Financial Servi

AI Powered Payments - Fraud Prevention focusing on paymen real-time transactions, and ID verification

- Accelerated data processing and end-to-end ML pipeline
- Data Factory Transformations (Feature Engineering, Data • Curation)
- Model Building Training (XGBoost, RNN, Transformers, GraphNN)
- Triton optimal inference serving

Applied to

- **Business Payments Fraud Detection**
- Customer Transaction Fraud: credit card fraud, •
- Application Fraud •
- Chargeback/return fraud, account takeover, etc.

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
Data t; nodels) vices) ents, e ataset	Anomaly Detection Cybersecurity / Fraud Data Analytics / Data Processing Data Science GNN Simulation / Modeling	NVIDIA AI Enterprise Deep Graph Library (DGL) DLFW: PyTorch, TensorFlow RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool RAPIDS (cuDF, cuGraph, cuML) Triton	Accelerated Computing Solutions BlueField-3 DPUs Data Center DGX BasePOD for Financial Services -> DGX SuperPOD DGX Cloud GPU Cloud Computing RTX-powered Al Workstations	Adyen Brex <u>Cloudera</u> <u>Dataiku</u> <u>Domino Data Lab</u> <u>FeatureSpace</u> Fiserv FIS Klarna <u>PayPal</u> Plaid <u>Snowflake</u> Stripe

Healthcare and Life Sciences Use Cases

Accelerating Transformation in Healthcare and Life Sciences – BioPharma

Use Case / Transformational Conversation

Use Case: Molecular Simulation Benefit: Accelerated Computing

<u>HPC</u> for Molecular Dynamics Simulation

- Lead Optimization •
- Molecular Dynamics
- Quantum Chemistry

Use Case: Structural Biology

Benefit: Accelerated Computing

<u>HPC</u> for Cryogenic Electron Microscopy (Cryo-EM)

- Target Discovery
- Image Processing
- 3D Reconstruction

Use Case: Biomolecular AI Model Development

Benefit: Accelerated AI Biomolecular Model Training (Amgen, Amgen Case Study, Terray Therapeutics Case Study, **Discovery and Design blog**)

AI for Biomolecular Model Development

- Virtual Screening
- Protein Binder Design
- De novo drug design
- Molecular property prediction
- Optimized molecule generation
- Biomolecular AI Model Building
- Biomolecular AI Model Training

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
	HPC Simulation / Modeling	<u>cuQuantum</u> <u>NGC HPC Containers</u> <u>GPU Accelerated AMBER</u> <u>GPU Accelerated GROMACS</u> <u>GPU Accelerated NAMD</u> <u>GPU Accelerated VASP</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Healthcare and Life Sciences -> DGX SuperPOD DGX Cloud RTX visual computing platform	Dassault Systémes (BIOVIA) QuBit Pharmaceut Rescale AMBER, GROMACS NAMD, VASP
	3D Reconstruction Image Processing HPC	NGC HPC Container (RELION) (REgularized LIkelihood OptimizatioN)	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Healthcare and Life Sciences -> DGX SuperPOD DGX Cloud	<u>Structura</u> <u>Biotechnology</u> (<u>cryoSPARC</u>)
<u>, Drug</u>	Generative Al GenAl and Al Model Training Model Building Al Framework Guardrails	NVIDIA AI Enterprise NVIDIA NIMs, Healthcare NIMs, BioNeMo, BioNeMo Solution Overview NeMo Guardrails, Guardrails blog RAPIDS (cuDF, cuML) NVIDIA AI Workbench, blog	Accelerated Networks RTX-powered AI Workstations	Altos Labs Arsenal Bioscience Dyno Therapeutics Evozyme Genentech Relation Therapeutic Terray Therapeutic

ces

Accelerating Transformation in Healthcare and Life Sciences – BioPharma

Use Case / Transformational Conversation

Use Case: Generative AI Biomolecular Inference Benefit: Accelerated AI biomolecular model inference (Recursion)

AI for Biomolecular Model Inference

- Virtual Screening / Drug Repositioning
- Protein Binder Design
- *De novo* Drug Design
- **Biomolecular Property Prediction**
- **Biomolecular Molecule Generation**

Use Case: Biomedical Imaging

• Pre-Clinical, Clinical Image Analysis

Use Case: Real World Evidence and Predictive Modeling **Benefit:** End-to-end Data Analytics pipeline acceleration

• Improve data analytics productivity and reduce cost

NVIDIA Accelerated Computing Full-Stack —

Workloads	NVNVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
Generative AI: Inference Deployment Guardrails	NVIDIA AI Enterprise NVIDIA NIMs, Healthcare NIMs, BioNeMo, BioNeMo Solution Overview NeMo Guardrails, Guardrails blog	Accelerated Computing Solutions Accelerated Networks DGX BasePOD for Healthcare and Life Sciences -> DGX SuperPOD RTX-powered AI Workstations	Charm Therapeutic CytoReason <u>Recursion</u> <u>Terray Therapeutic</u> <u>Weights & Biases</u>
Computer Vision Data Analytics / Processing	<u>NVIDIA Al Enterprise</u> <u>MONAI, MONAI cloud APIs</u>	Accelerated Computing Solutions Data Center DGX BasePOD for Healthcare and Life Sciences -> DGX SuperPOD DGX Cloud RTX-powered AI Workstations	<u>Clear ML</u> <u>Dataiku</u> <u>Flywheel</u> <u>ProHawk</u> <u>Rhino Health</u> <u>Weights & Biases</u> <u>V7</u>
Data Analytics / Processing Data Science	<u>NVIDIA AI Enterprise</u> <u>RAPIDS</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark, Accelerated Spark</u> <u>Analysis Tool</u>	Accelerated Computing Solutions Data Center DGX BasePOD for Healthcare and Life Sciences -> DGX SuperPOD DGX Cloud RTX-powered AI Workstations	<u>Dataiku</u> <u>Domino Data Lab</u> <u>Run:ai</u> <u>Weights & Biases</u>

tics

Accelerating Transformation in Healthcare and Life Sciences – Med Tech

Use Case / Transformational Conversation

Use Case: Medical Image Reconstruction **Benefit:** 50x decrease in image reconstruction time

Medical Imaging accelerated Medical Image Reconstruction

- Image processing
- 3D reconstruction

Use Case: Medical Imaging Device Calibration

Benefit: 2x decrease in CT calibration time

Improving device utilization by accelerating medical imaging a device calibration (Medical Imaging, Digital Surgery, Point of C (HPC explained)

Speedup of calibration, increase photon counting CT usage

Use Case: Medical Imaging AI Development **Benefit:** Accelerated Clinical AI model development

Medical Imaging, Digital Surgery

- Synthetic Image Generation (<u>tech blog</u>)
- Model Training Framework

Use Case: Clinical AI Inference

Benefit: Accelerated Clinical AI inferencing

non-realtime (Medical Imaging)

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
	3D Reconstruction Image Processing Rendering	NVIDIA AI Enterprise CUDA TensorRT RTX technology	<u>GPU Cloud Computing</u> <u>RTX-powered AI Workstations</u> <u>RTX visual computing platform</u>	<u>ProHawk</u>
and Care) ige	HPC	<u>NVIDIA AI Enterprise</u> <u>CUDA</u> <u>TensorRT</u> <u>RTX technology</u>	<u>RTX-powered Al Workstations</u> <u>RTX visual computing platform</u>	
	Synthetic Data Generation Traditional AI Training Annotation and Labeling Federated Learning Generative AI: Reasoning Retrieval/RAG Guardrails	NVIDIA AI Enterprise MONAI Core, MONAI cloud APIs NVIDIA NIMs, Healthcare NIMs NeMo Guardrails, Guardrails blog, RAG Merlin NVIDIA AI Workbench, blog	Accelerated Computing Solutions Data Center DGX BasePOD for Healthcare and Life Sciences -> DGX SuperPOD DGX Cloud DGX NeMo LLM Solution Brief RTX-powered Al Workstations	<u>Clear ML</u> <u>Dataiku</u> <u>Flywheel</u> <u>Rhino Health</u> <u>Weights & Biases</u>
	Computer Vision Traditional AI Inference Video Analytics	NVIDIA AI Enterprise MONAI TensorRT Triton RTX technology	<u>IGX</u> <u>ConnectX</u> <u>Jetson</u> <u>RTX-powered AI Workstations</u> <u>RTX visual computing platform</u>	<u>Newton's Tree</u> <u>Nuance</u> <u>Prohawk</u>

Accelerating Transformation in Healthcare and Life Sciences – Med Tech

Use Case / Transformational Conversation

Use Case: Real-time Clinical AI Inference

Benefit: 2x faster time to market, 40% reduction in cost of engineering (Dev and Maintenance)

Accelerated Clinical AI Inferencing at the edge (Medical Imagi Digital Surgery, Point of Care)

- Real-time streaming video
- Ultra low latency AI inferencing (<10ms)

Use Case: Medical Visualization (AR/VR)

Benefit: Medical Visualization (AR/VR) for Digital Surgery Assi Smart Hospitals

- Digital Twin of OR
- Simulation of surgeries (University Hospital Bonn, Atlas Meditech)
- Digital Twin of Hospital
- AR Surgery Assist

Use Case: Robotic Control

(<u>Computex PR</u>)

 Robotic Control for Medical Imaging, Digital Surgery (<u>Atlas</u> Meditech), Point of Care

Use Case: Sensor Integration

Benefit: Sensor data ingestion pipeline for Medical Imaging, Surgery, Point of Care

Sensor Processing, IoT

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
ging,	Computer Vision / Video Analytics Traditional AI Inference Video Streaming	Holoscan NVIDIA AI Enterprise TensorRT Triton RTX technology	IGX ConnectX Jetson RTX-powered AI Workstations RTX visual computing platform	ODM: Advantech ADLINK Dedicated Comput MBX (Ahead)
ssist and	AR / VR Cloud Streaming Data Aggregation HPC Physics-ML Rendering / Ray Tracing Simulation / Modeling USD Data Pipeline Video Streaming,Virtualization	Holoscan CloudXR NVIDIA AI Enterprise Modulus TensorRT Virtual GPU (vGPU) Omniverse Enterprise RTX technology RTX virtual Workstation (vWS)	Accelerated Computing Solutions GPU Cloud Computing IGX, ConnectX, Jetson RTX-powered Spatial Framework RTX Systems RTX visual computing platform	MagicLeap ProHawk
<u>) S</u>	Robotics	<u>Holoscan</u> <u>Isaac</u> SDK <u>NVIDIA AI Enterprise</u> <u>TensorRT</u> <u>Triton</u> <u>RTX technology</u>	IGX, <u>ConnectX</u> , <u>Jetson</u> <u>RTX visual computing platform</u>	ODM: <u>Advantech</u> <u>ADLINK</u> <u>Dedicated Comput</u> <u>MBX</u> (Ahead)
, Digital	loT Sensor Data Processing	<u>Holoscan Sensor Bridge</u> <u>NVIDIA AI Enterprise</u> <u>Clara</u>	<u>Accelerated Computing Solutions</u> <u>IGX, ConnectX, Jetson</u>	FPGA Partners: <u>Lattice Semicondu</u> Microchip

Accelerating Transformation in Healthcare and Life Sciences – Genomics

Use Case / Transformational Conversation

Use Case: Single Cell and Spatial Tertiary

Benefit: Accelerated clustering and analytics, reduce analysis from hours to minutes

- Enable real-time data analysis
- Iterate faster

Use Case: NGS - Genomic Secondary Analysis

Benefit: Alignment and Variant Calling - Next Generation Sequencing

(AWS Case Study Agilent Technologies)

- Increase Throughput
- Decrease turn-around time
- Reduce cost per sample
- Improve accuracy with AI

Use Case: Spatial Genomic Secondary Analysis

Benefit: Accelerated Spatial Genomic Secondary Analysis

- Faster cell segmentation
- Higher Image Processing throughput
- Faster 3D Reconstruction

Use Case: Genomic Primary Analysis

Benefit: Accelerated Genomic Primary Analysis

- Reduce instrument run time
- Increase basecalling accuracy
- Enable more data generation

NVIDIA Accelerated Computing Full-Stack

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
sis time	Data Analytics / Processing HPC	<u>NVIDIA AI Enterprise</u> <u>RAPIDS</u> (cuCIM) <u>TensorRT</u> <u>RTX technology</u>	<u>Accelerated Computing Solutions</u> <u>RTX-powered AI Workstations</u> <u>RTX visual computing platform</u>	<u>scVerse</u> <u>TGen</u>
	Alignment Data Analytics / Processing Variant Calling	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s (fq2bam, <u>Parabricks – DeepVariant</u>) <u>Clara Parabricks</u> <u>RTX technology</u>	Accelerated Computing Solutions GPU Cloud Computing RTX-powered AI Workstations RTX visual computing platform	Agilent Technologi SOPHiA GENETICS Genomics-as-a- Service: DNAnexus FormBio Terra
	3D Reconstruction Cell Segmentation Image Processing	NVIDIA AI Enterprise Clara TensorRT RAPIDS (cuCIM) RTX technology	Accelerated Computing Solutions RTX-powered AI Workstations RTX visual computing platform	<u>Deep Cell</u> <u>Nanostring</u>
	Base Calling Sensor Processing	<u>NVIDIA AI Enterprise</u> <u>CUDA</u> <u>TensorRT</u> <u>RTX technology</u>	Accelerated Computing Solutions RTX-powered AI Workstations RTX visual computing platform	<u>Oxford Nanopore</u> <u>PacBio</u> <u>Singular Genomics</u> <u>Ultima</u>

Accelerating Transformation in Healthcare and Life Sciences

Use Case / Transformational Conversation

Use Case: Cybersecurity Threat Detection

Benefit: Provide complete visibility to identify and respond to threats / vulnerabilities quickly

- Cybersecurity Monitor all users, devices, and data across network
- Insider threat detection
- Al Workflow: <u>Digital Fingerprinting</u>

Use Case: Software Securing Vulnerability Analysis

Benefit: Leverage generative AI agents and LLMs to reduce the time to analyze and address security vulnerabilities in softwar

- Al Workflows: <u>CVE Analysis</u>
- GTC24 talk <u>How to Apply Generative AI to Improve Cybers</u>

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
to ss the	Cybersecurity / Fraud Detection	<u>NVIDIA Al Enterprise</u> <u>Morpheus</u>	Accelerated Computing Solutions BlueField DPUs GPU Cloud Computing RTX-powered AI Workstations	<u>Crowdstrike</u>
the are <u>security</u>	Generative AI: AI Agents Retrieval/RAG Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>Morpheus</u> <u>NeMo, Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u>	<u>Accelerated Computing Solutions</u> <u>BlueField DPUs</u> <u>GPU Cloud Computing</u> <u>RTX-powered AI Workstations</u>	<u>Crowdstrike</u> <u>Trend Micro</u> <u>Zscaler</u>

Higher Education and Research Use Cases

Accelerating Transformation in Higher Education and Research

Use Case / Transformational Conversation

Use Case: DNA & RNA Genomic Sequencing Analysis **Benefit:** Accelerate genomic research/discovery and enable research at scales and scopes not previously possible (Webinar Accelerating Gene Variant Detection with Deep Lear Webinar Accelerating Large-Scale Genomics Research, HPC explained)

Genomic Research

Use Case: Weather and Climate Prediction Benefit: Improve weather and climate prediction

(blog researcher series, HPC explained)

Digital Twins - Earth2 modeling

Climate Research

Use Case: Quantum Research

Benefit: Enable the advancement of Quantum research and simulation of Quantum H/W at scale (BASF, Juelich Supercomputing Centre)

Supercomputing to accelerate Quantum Computing resear

Use Case: GPU as-a-Service

Benefit: Maximize system utilization, reduce researchers lock entire nodes

(University of Florida)

- Shared AI infrastructure
- Create granular segmentation of institute resources
- Data Science


NVIDIA Accelerated Computing Full-Stack —

			-	
	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
<u>arning</u> ,	HPC	<u>NVIDIA Al Enterprise</u> <u>NVIDIA NIM</u> s <u>Clara Parabricks</u> <u>RAPIDS</u> (cuCIM)	Accelerated Computing Solutions Accelerated Networks Data Center GPU Cloud Computing	Rescale
	Data Analytics / Processing Data Science Digital Twin HPC Physics-ML Simulation / Modeling Virtualization	NVIDIA AI Enterprise Modulus Virtual GPU (vGPU) Omniverse Enterprise RTX technology RTX virtual Workstation (vWS)	Accelerated Computing Solutions Accelerated Networks Data Center GPU Cloud Computing OVX RTX-powered AI Workstations RTX Systems	Mathworks Rescale
arch	Algorithm Development Quantum Computing Simulation / Modeling	<u>CUDA-Q</u> <u>cuQuantum</u>	<u>Accelerated Networks</u> <u>DGX Quantum</u>	
cking in	Data Science Computer Graphics & Visualization Virtualization	<u>NVIDIA AI Enterprise</u> <u>Virtual GPU (vGPU)</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	<u>Accelerated Networks</u> <u>Data Center</u>	

Accelerating Transformation in Higher Education and Research

Use Case / Transformational Conversation

Use Case: Robotics

Benefit: Full-stack acceleration for cloud-to-edge systems, acceleration libraries, and optimized AI models to develop, trai simulate, deploy, operate, and optimize robot systems and sof (ORBIT-Surgical, NVIDIA Seattle Robotics Lab, NVIDIA and The Institute GTC24, Vision AI tech blog)

- Digital Twin
- Incorporating simulation systems with physical robots
- Powering robotic systems with AI (NLP, computer vision)
- Robotic Factory Digital Twin with Omniverse
- Train robots with optimized decision making

Use Case: Campus IT "Al-as-a-service"

Benefit: Self-hosted models and API access to leading edge GenAI architectures. Class registration, lecture summarization on research datasets

- Success stories of GenAl in academic settings spread the a the possible
- RAG solutions for improving student outcomes, e.g. lecture summarization and personalized study/test tools.
- Centralized AI infrastructure can serve both research purpo and higher ed institutional compute needs.

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
rain, oftware ne Al	Computer vision Edge computing HPC Simulation/Modeling Multimodal LLM Optimizer Engine Speech AI/NLP Physics-ML Visualization	Jetson modules/SDK, Jetson Software Metropolis microservices Deepstream NVIDIA AI Enterprise cuOpt NIM Riva, Riva – Robot Dog Demo Triton Omniverse Enterprise Isaac ROS Isaac SIM	Accelerated Computing Solutions Jetson Orin OVX RTX-powered AI Workstations	
e art of re poses,	Generative AI: Reasoning Retrieval/ RAG Model fine-tuning Inference	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, RAG</u> <u>TRT-LLM</u>	Accelerated Computing Solutions GPU Cloud Computing	

HPC / Supercomputing Use Cases

Accelerating Transformation in HPC / Supercomputing

Use Case / Transformational Conversation

Use Case: Respond to Pandemic Scale Virus

Workflow that combines Genomic modeling with LLM, Molecu dynamics steered by AI with Diffusion models combined with generative proteomic models to predict variants and inform a driving Biology Lab.

(Argonne National Laboratory, Juelich Supercomputing Centre Megatron-Core tech blog)

- Converged Biology model with Digital Twin
- Self Driving Biology Lab, robot training

Use Case: Digital Twin for Fusion Reactor with Integrated Research Infrastructure

Workflow that combines Conventional ModSim apps with Sur models along with ML Prediction and Control as part of the re time control system, where some models run at a remote data center. (UKAEA and University of Manchester, tech blog, HPC)

- Converged plasma physics model with Digital Twin
- Self Driving Physics Experiment, on-line self driving real tin control, reinforcement learning trained with experiment da

Use Case: Converged Models for Advanced Material Science Al is used to achieve the fidelity of quantum-chemistry method with the scale of classical molecular dynamics (<u>SC21</u>, <u>HPC</u>)

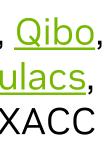
- Model the plasma facing material in a fusion Reactor
- Study radiation damage in semiconductors

Use Case: Quantum Computing

Quantum computing has the potential to offer giant leaps in computational capabilities. The ability of scientists, developer researchers to simulate quantum circuits on classical comput vital to getting us there (Juelich Supercomputing Centre, tech

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's	
cular h a self tre, HPC,	Conventional ModSim LLM/Generative AI: Direct and Proximal Preference Optimization, Guardrails AI - DeepDriveMD for ensemble steering MD Simulations Edge Computing	<u>Holoscan</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIMs, Clara Parabricks,</u> <u>Megatron, NeMo Retriever,</u> <u>Guardrails, Guardrails blog, RAG,</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark,</u> <u>NVIDIA AI Workbench, blog</u> <u>Omniverse Enterprise, Isaac Sim</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX NeMo LLM Solution Brief DGX SuperPOD GPU Cloud Computing OVX RTX-powered AI Workstations	AlphaFold Colmena OpenMM or NAME	
urrogate real ata C) ime data	Conventional ModSim Plasma Physics Models with Surrogates trained with simulated data Reinforcement Learning	<u>Holoscan</u> <u>HPC SDK</u> <u>NVIDIA AI Enterprise</u> <u>Modulus</u> <u>RAPIDS Accelerator for Apache Spark</u> <u>Omniverse Enterprise</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX SuperPOD GPU Cloud Computing OVX	CGYRO GEANT GTC GX simulator JOREK TGLF transport mo XGC fusion simula	
e hods	Conventional Molecular Dynamics Ab Initio MoDSim Machine Learned Interatomic Potential Electronic Structure Methods	<u>HPC SDK</u> <u>NVIDIA AI Enterprise</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX SuperPOD GPU Cloud Computing	GAMESS Gaussian LAMMPS MLIP SNAP VASP	
n ers, and uters is <u>ch blog</u>)	Quantum circuit simulation Quantum machine learning Quantum chemistry	<u>CUDA-Q</u> <u>cuQuantum SDK</u>	<u>Accelerated Networks</u> <u>DGX SuperPOD</u>	<u>Cirq, PennyLane, G</u> <u>Qiskit, QuEST, Qula</u> TorchQuantum, XA	



Manufacturing and Industrials Use Cases

Accelerating Transformation in Manufacturing and Industrials

Use Case / Transformational Conversation

Use Case: Generative AI for Technician Support Benefit: Technician/ worker productivity augmentation (AT&T)

• Industrial co-pilot (<u>Continental</u>)

Use Case: Intelligent Automation for Internal Product Innova and Design Teams

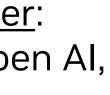
Benefit: Researcher/ engineer productivity augmentation

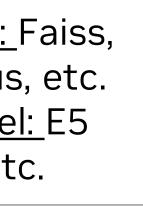
Generative AI for Chip Design (<u>ChipNeMo</u>)

Use Case: Faster Product Design, Full-fidelity Visualization a Real-time Photorealistic Rendering

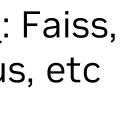
Benefit: Maximize designer productivity, better informed deci making, process efficiency

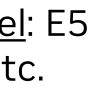
(Alstom, M4 Engineering)


- Concurrent design (CAD) with real-time interactive photorealistic visualization
- Al-powered rendering denoising, Deep Learning for genera design, Generative Al for conceptual design iteration
- Faster iteration on creation of compelling renders for desireviews, customer presentations
- Interactive photorealistic visualization of products


— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
	Data Curation Distributed training Generative AI: Customization (prompt	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> Guardrails blog, RAG	<u>Accelerated Computing Solutions</u> <u>Data Center</u> <u>DGX Cloud</u> DGX NeMo LLM Solution Brief	<u>FM model provider</u> Meta, Mosaic, Ope etc.
	engineering, prompt learning, PEFT, fine-tuning) Inference Retrieval/RAG Guardrails	NVIDIA AI Workbench, blog	<u>GPU Cloud Computing</u> <u>RTX-powered AI Workstations</u> <u>RTX Systems</u>	<u>Vector database:</u> F Mango DB, Milvus, <u>Embedding model:</u> small, E5 large, etc
vation	Data Curation Distributed training Generative AI:	<u>NVIDIA Al Enterprise</u> <u>NVIDIA NIM</u> s NeMo Retriever, Guardrails,	<u>Accelerated Computing Solutions</u> <u>Data Center</u> DGX Cloud	<u>FM model</u> : Meta, Mosaic, Open Al, e
	Customization (prompt engineering, prompt learning, PEFT, fine-tuning) Inference Retrieval/RAG Guardrails	<u>Guardrails blog</u> , <u>RAG</u>	DGX NeMo LLM Solution Brief GPU Cloud Computing	<u>Vector database</u> : F Mango DB, Milvus, <u>Embedding model</u> : small, E5 large, etc
and cision-	Design Generative Al: Visual Design	<u>NVIDIA AI Enterprise</u> <u>Virtual GPU (vGPU)</u>	<u>Accelerated Computing Solutions</u> <u>Data Center</u> OVX	<u>Autodesk</u> Chaos (<u>V-Ray</u> , Vantago, Engegno)
CISION-	Rendering / Ray Tracing Virtualization	<u>Omniverse Enterprise</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	RTX visual computing platform	Vantage, <u>Enscape</u> <u>Dassault Systèmes</u> <u>Luxion KeyShot</u> PTC <u>Siemens</u>
rative				<u>Unreal Engine</u>
sign				





Accelerating Transformation in Manufacturing and Industrials

Use Case / Transformational Conversation

Use Case: Virtual Factory

Benefit: Develop USD-based tools, applications, and data pipe to accelerate and unlock new possibilities

(BMW, Mercedez Benz, Delta Electronics, Foxconn, Wistron, Continental, Pegatron, Optimizing Intralogistics blog, Talk to Y Supply Chain Data Using NIM)

- Factory planning
- Process simulation
- Robotics training
- Operations
- Al Workflow: <u>Multi-Camera Tracking</u>

Use Case: Vision-based Automation & Safe Autonomous Sys

Benefit: Throughput improvement (10X for AOI, 100 picks per minutes for robotics), analytics accuracy improvement (99.8% accuracy on AOI), lower cost of development & support (5X m building speedup)

(Pegatron, Soft Robotics, Verdant, Kawasaki Heavy Industries, AI tech blog)

Industrial automation and autonomous systems

- More accurate and robust automation, safe autonomous systems
- Customer in-house algorithms and partner solutions

Use Case: Industrial Automation – Robotics

Benefit: Accelerate Robotics Development & Simulation (Teradyne, Computex blog, tech blog)

- Kinematics, Behavior, Synthetic Data Generation
- Training Large Behavioral Models

NVIDIA Accelerated Computing Full-Stack

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
pelines	Data Aggregation Digital Twin Optimizer Engine Rendering / Ray Tracing Simulation / Modeling / Design USD Data Pipeline Virtualization	Metropolis microservices (Multi-camera Tracking) NVIDIA AI Enterprise cuOpt NIM, Modulus Virtual GPU (vGPU) Omniverse Cloud Omniverse Enterprise Isaac Sim, Omniverse Replicator Reality Capture	Accelerated Computing Solutions Microsoft Azure, Omniverse Cloud OVX RTX Systems RTX visual computing platform	Autodesk (FlexSim Bentley (MicroStat Dassault Systèmes (DELMIA, ENOVIA, CATIA), Hexagon, ipolog, Rockwell Automation, Siemens (Tecnoma Teamcenter, NX), SyncTwin, Visual Components
ystems er % model	Computer Vision / Video Analytics Optimizer Engine Robotics (sensor perception, mapping, path planning, human robot interaction, situational awareness, safety) Video Streaming	Holoscan SDK Isaac SDK Metropolis microservices NVIDIA AI Enterprise cuOpt NIM Omniverse Enterprise	Accelerated Computing Solutions (Inference) <u>Data Center</u> <u>GPU Cloud Computing</u> (Training) <u>OVX</u> AGX, IGX, Isaac Nova Orin	Cogniac Landing Al ProHawk
	Digital Twin Edge Computing Rendering / Ray Tracing Simulation / Modeling / Design Synthetic Data Generation Training Virtualization	NVIDIA Al Enterprise Omniverse Enterprise Isaac Sim RTX technology	Accelerated Computing Solutions OVX Jetson (Orin) Isaac Nova Orin IGX	ROS Siemens (Process Simulate) Visual Components ODMs: Advantech ADLINK

nts

Accelerating Transformation in Manufacturing and Industrials

Use Case / Transformational Conversation

Use Case: AI and HPC-Driven Field Operation and Service Benefit: Increase in safety and efficiency, and a decrease in ti and costs for inspection and maintenance. Estimated \$218M across 7 major railway operators every year (Kawasaki Heavy Industries, Factory Digital Twin, Vision AI tec blog)

Use Case: Accelerated Engineering Simulation (CAE)

Benefit: More design cycles, less physical testing; TCO savings infrastructure, 5X or more speedups over CPU based solvers, Accelerated Computing allows more CAE throughput at lower and power consumption – Better Products Faster (Trek Bicycle, Mercedes Benz GTC24 talk)

- CFD, Electromagnetics, Particle Simulations, Structural Mechanics (HPC explained)
- Design Optimization

Use Case: XR for Design, Design Reviews, and Global Collabo **Across Remote Teams**

Benefit: Faster, better informed decision-making during design (Volvo Group), Photorealistic rendering for spatial computing Vision Pro)

- Extended reality (XR)
- Advanced XR innovations allow design teams to view highfidelity augmented reality content
- High-fidelity, immersive VR experiences with AIO headsets

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
time A saving ech	Object detection and identification Optimizer Engine Routing optimization	<u>Metropolis</u> microservices <u>NVIDIA AI Enterprise</u> <u>cuOpt NIM</u>	Accelerated Computing Solutions Accelerated Networks Data Center GPU Cloud Computing Jetson Orin OVX RTX Systems	
ngs on 5, er cost	Simulation / Modeling / Design Virtualization HPC Physics-ML	HPC SDKNVIDIA AI EnterpriseCUDA, CUDA-XModulusVirtual GPU (vGPU)Omniverse EnterpriseRTX technologyRTX virtual Workstation (vWS)	Accelerated Computing Solutions AccAccelerated Networks Data Center GPU Cloud Computing OVX RTX Systems	Altair Ansys Cadence Dassault Systèmes Hexagon Rescale Siemens Synopsys
boration sign g (<u>Apple</u> h-	AR / VR Cloud Streaming Design Rendering / Ray Tracing Virtualization	<u>CloudXR</u> <u>NVIDIA AI Enterprise</u> <u>Virtual GPU (vGPU)</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	Accelerated Computing Solutions GPU Cloud Computing RTX visual computing platform	Autodesk Chaos Dassault Systèmes Luxion KeyShot PTC Siemens <u>HMD vendors: HTC</u> Vive, Meta, Pimax,
ts				

<u>es</u>

<u>es</u>

<u>x, Varjo</u>

Media & Entertainment Use Cases

Accelerating Transformation in Film & Television

Use Case / Transformational Conversation

Use Case: AI Foundry Services

Benefit: Quick ideation, faster iterations, new opportunities (<u>GenAl for M&E</u>, GTC24: <u>Next Gen Al Startups</u>, <u>Beyond the So</u>

- Gen AI for accelerated content creation and personalizati
- Text generation, localization and summarization
- Customer service intelligent chatbots and avatar
- Al Workflows: Intelligent Virtual Assistant, Generative Al-Powered Chatbots Using RAG, Al Chatbot for Customer S

Use Case: Video Al

Benefit: Higher quality, deeper insights, higher customer engagement, more accessible, content search, personalized creation (<u>GenAl for M&E</u>)

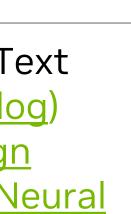
- Audio, Video, and Augmented Reality Effects
- Transcription, Translation, descriptive audio
- Computer Vision (Move Al Markerless MoCap GTC23 talk)
- Archive Content restoration
- Video generation (<u>Runway GTC24 talk</u>)

Use Case: Natural Language Processing (NLP) and Automat Speech Recognition (ASR)

Benefit: More accurate, more efficient, lower cost (GenAl for

- Closed Captioning FCC mandate
- News and script analysis for audience understanding
- Translation of content for wider distribution

Use Case: Data Analytics, Recommenders, Personalization Benefit: Improve Data Science efficiency, effectiveness and cost


- Analytics acceleration for faster insights
- Churn Prediction to stay more competitive
- GPU-acceleration for recommenders and customer personalization engines (GTC24 talk <u>Recommendations</u>)

— NVIDIA Accelerated Computing Full-Stack —

Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Visual Design Guardrails	<u>CV-CUDA</u> <u>Picasso</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>Riva</u>	Accelerated Computing Solutions Accelerated Networks DGX NeMo LLM Solution Brief GPU Cloud Computing	Adobe Bria Getty Images iStock Runway Shutterstock Stable Diffusion
Generative AI: Guardrails Video Post-Production Video Conferencing Video Captioning / Subtitling Live Broadcast and Streaming	<u>CV-CUDA</u> <u>Rivermax</u> <u>RTX Super Resolution</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>Maxine, Maxine blog, NeVa</u> <u>NeMo Guardrails, Guardrails</u> <u>blog, Riva</u>	Accelerated Computing Solutions BlueField DPUs GPU Cloud Computing RTX-powered AI Workstations RTX visual computing platform	Adobe Premiere Te Based Editing (blog Blackmagic Design (Davinci Resolve Ne Engine) Descript Cinnafilm
Computer Vision Generative AI: Speech AI / NLP Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s <u>NeMo Guardrails, Guardrails</u> <u>blog</u> <u>Riva</u>	<u>Accelerated Computing Solutions</u> <u>GPU Cloud Computing</u>	Descript Speechmatics VEED.IO
Computer Vision / Video Analytics Data Analytics / Processing Data Science General Al	NVIDIA AI Enterprise RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool	Accelerated Computing Solutions Accelerated Networks GPU Cloud Computing	Dataiku Domino Data Lab Kinetica Runway Weights & Biases
	Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Visual Design Guardrails Generative AI: Guardrails Video Post-Production Video Conferencing Video Captioning / Subtitling Live Broadcast and Streaming Computer Vision Generative AI: Speech AI / NLP Guardrails Computer Vision / Video Analytics Data Analytics / Processing Data Science	WorkloadsNVIDIA Platforms, Microservices, Application Frameworks, Dev ToolsGenerative AI: Reasoning Retrieval/RAG Speech AI/NLPCV-CUDA PicassoVisual Design GuardrailsNVIDIA AI Enterprise NVIDIA NIMs, ACE NIMs Guardrails blog, RAG RivaGenerative AI: GuardrailsCV-CUDA PicassoGenerative AI: GuardrailsCV-CUDA Rivermax RIX Super ResolutionVideo Conferencing Video Captioning / Subtitling Live Broadcast and StreamingNVIDIA AI Enterprise NVIDIA NIMs, Maxine, Maxine blog, NeVa NeMo Guardrails, Guardrails blog, RivaComputer Vision Generative AI: Speech AI / NLP GuardrailsNVIDIA AI Enterprise NVIDIA NIMs, ACE NIMS NeMo Guardrails, Guardrails blog, RivaComputer Vision / Video AnalyticsNVIDIA AI Enterprise RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark	WorkloadsNVIDIA Platforms, Microservices, Application Frameworks, Dev ToolsNVIDIA Accelerated ComputingGenerative AI: Reasoning Retrieval/RAG Speech AI/NLPCV-CUDA PicassoAccelerated Computing Solutions Accelerated Networks DGX NeMo LLM Solution Brief GPU Cloud ComputingGenerative AI: Speech AI/NLPCV-CUDA PicassoAccelerated Networks DGX NeMo LLM Solution Brief GPU Cloud ComputingGenerative AI: GuardrailsCV-CUDA NMDIA AI Enterprise RivaAccelerated Computing Solutions BlueField DPUs GPU Cloud ComputingGenerative AI: GuardrailsCV-CUDA Rivermax RTX Super Resolution NVIDIA AI Enterprise NVIDIA AI Enterprise NVIDIA NIMS, Maxine, Maxine blog, NeVa NeMo Quardrails, Guardrails blog, RivaAccelerated Computing Solutions BlueField DPUs GPU Cloud Computing platformComputer Vision Generative AI: Speech AI / NLP GuardrailsNVIDIA AI Enterprise NVIDIA AI Enterprise NVIDIA NIMS, ACE NIMS NeMo Guardrails, Guardrails blog, RivaAccelerated Computing Solutions GPU Cloud Computing Plat Analytics / Processing Data Analytics / Processing Data ScienceNVIDIA AI Enterprise RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated SparkAccelerated Computing Solutions Accelerated Computing Solutions GPU Cloud Computing

Accelerating Transformation in Live Media

Use Case / Transformational Conversation

Use Case: Software-Defined Broadcast

Benefit: Enables greater flexibility, scalability, and agility in th deployment and management of live media services, and incre encoding performance

(Cosm GTC24 talk, Cosm, Software-Defined Broadcast Solution)

- Dynamically allocate resources
- Efficiently handle diverse media formats
- Integrate real-time analytics and personalized content deli

Use Case: Video Al

Benefit: Higher quality, deeper insights, higher customer engagement

(GenAl for M&E)

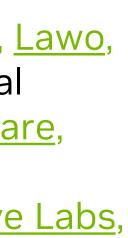
- Audio, Video, and Augmented Reality Effects
- Transcription, Translation
- Computer vision
- Content restoration

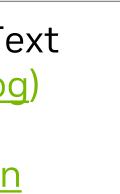
Use Case: Natural Language Processing (NLP) and Automatic Speech Recognition (ASR)

Benefit: More accurate, more efficient, lower cost (GenAl for M&E)

- Closed Captioning FCC mandate
- News and script analysis for audience understanding
- Translation of content for wider distribution

Use Case: Data Analytics, Recommenders, Personalization


Benefit: Improve Data Science efficiency, effectiveness, lower


- Analytics acceleration for faster insights
- Churn Prediction to stay more competitive
- GPU-acceleration for recommenders and customer personalization engines

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
the crease tion)	Live Broadcast and Streaming SMPTE ST 2110 Encode / Decode Hyperpersonalization Immersion Interactivity	NVIDIA Holoscan for Media, Holoscan live media AI blog NVIDIA Rivermax Virtualization Visualization	Accelerated Networks GPU Cloud Computing OVX RTX visual computing platform	Beamr, Cinnafilm, Comprimato, EVS, L Pebble, RED Digital Cinema, <u>RT Softwar</u> Speechmatics, Telestream, <u>Twelve</u> Vizrt (Viz Engine)
	Generative Al Guardrails Video Post-Production Video Conferencing Video Captioning / Subtitling Live Broadcast and Streaming	<u>Rivermax</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Guardrails, Guardrails</u> <u>blog</u> <u>Maxine, Maxine blog</u> <u>Riva</u>	Accelerated Computing Solutions BlueField DPUs GPU Cloud Computing RTX visual computing platform	Adobe Premiere Tex Based Editing (blog) <u>Cinnafilm</u> <u>Blackmagic Design</u> (Davinci Resolve New Engine) <u>Descript</u> <u>Twelve Labs</u>
tic	Generative AI: Speech AI / NLP Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Guardrails, Guardrails</u> <u>blog</u> <u>Riva</u>	<u>Accelerated Computing Solutions</u> <u>GPU Cloud Computing</u>	<u>Descript</u> <u>Speechmatics</u> <u>VEED.IO</u>
er cost	Computer Vision / Video Analytics Data Analytics / Processing Data Science General AI	<u>NVIDIA AI Enterprise</u> <u>DALI</u> <u>RAPIDS (cuDF, cuGraph, cuML)</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark, Accelerated Spark</u> <u>Analysis Tool</u>	Accelerated Computing Solutions Accelerated Networks GPU Cloud Computing	<u>Dataiku</u> <u>Domino Data Lab</u> <u>Kinetica</u> <u>Runway</u> <u>Twelve Labs</u> <u>Weights & Biases</u>

📀 NVIDIA

Accelerating Transformation in Game Development

Use Case / Transformational Conversation

Use Case: AI for Non-Player Characters (NPCs)

Benefit: Enable new levels of player interaction and immersio (GenAl for M&E)

- Create unique situational character dialog
- Give all characters a unique voice
- Automatically animate lip sync through the delivered dialog
- (Kairos Gaming Reference Workflow, ACE tech blog)

Use Case: AI to Accelerate Game Asset Development

Benefit: Reduce the time spent on asset iteration (GenAl for

- Concept art generated through natural language
- 3D models and textures generated by reference and text
- Localization of Text and speech through machine learning
- Character facial animation automatically generated by diale

Use Case: Accelerate Code and Story Development

Benefit: Improve GenAI response accuracy, reduce latency, op throughput, reduce operations costs (<u>GenAl for M&E</u>)

- Combine internal knowledge bases with foundation models without having to train or fine-tune the model
- Augment prompts with internal data (e.g. source code, lore
- Responses are more expansive, with source references

Use Case: Virtualization for Data Center Migration

Benefit: Provide improved Data/IP security and resource alloc to distributed team, high value assets stay within the data ce

• Dynamically distribute system resources for easier IT management and greater utilization

Use Case: Enterprise Hardware to Enable High Memory Worl **Benefit:** Increase artist, animator, designer productivity

- High GPU memory allows for smooth running of complex set on game engine, especially in multi-app workflows
- Rendering large game scenes

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforn Microservices, Appli Frameworks, Dev
g	Generative AI: Intelligence (Nemotron SLM & LLM) Speech (Text 2 Speech, Speech recognition, translation) Appearance (Audio2Face) Guardrails	<u>Metropolis</u> microservice <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s (<u>Audio2Face, Riva ASR, I</u> <u>TTS, Nemotron SLM (EA <u>NeMo NeMoTron, Retrie</u> <u>Guardrails, Guardrails bl</u> <u>NVIDIA AI Workbench, b</u></u>
<u>M&E</u>) og	Al Generative Al: Visual Design Guardrails	<u>CV-CUDA</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Guardrails, Guard blog</u> <u>Riva</u>
otimize s, e)	Generative AI: Reasoning Retrieval/RAG Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardra Guardrails blog</u> , <u>RAG</u>
cation enter	VDI Virtualization	<u>Virtual GPU (vGPU)</u> <u>RTX Virtual Workstations</u>
kloads scenes	Environment/Level design 3D model design MoCap Rendering	<u>NVIDIA AI Enterprise</u>

ns, ication Tools	NVIDIA Accelerated Computing	Key ISV's
es <u>NMT,</u> ()), ever, log, <u>RAG</u> olog	Accelerated Networks DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing	<u>Convai</u> <u>ElevenLabs</u> <u>Inworld</u>
<u>drails</u>	Accelerated Computing Solutions Accelerated Networks DGX NeMo LLM Solution Brief GPU Cloud Computing RTX visual computing platform	<u>Adobe (blog)</u> <u>Bria, Getty Images,</u> <u>iStock, Runway,</u> <u>Shutterstock,</u> <u>Stable Diffusion</u>
<u>ails</u> ,	Accelerated Computing Solutions Accelerated Networks DGX NeMo LLM Solution Brief GPU Cloud Computing	<u>Anthropic Al</u> <u>Google Cloud</u> <u>Meta</u> <u>OpenAl</u>
<u>s (vWS)</u>	Accelerated Computing Solutions Accelerated Networks GPU Cloud Computing RTX visual computing platform	<u>Citrix</u> <u>HP Anywhere/Terac</u> <u>Nutanix</u> <u>VMware</u>
	Accelerated Computing Solutions Accelerated Networks GPU Cloud Computing RTX visual computing platform	

Use Case / Transformational Conversation

Use Case: Al Agents

Benefit: Accelerate time-to-insight and create actionable intelligence from traditional analytics (GenAl for M&E)

- Custom LLM and RAG workflows
- Extract intelligence from existing data at rest
- Create automations between manual processes

Use Case: Generative AI for Ad & Marketing Content Creatio Benefit: Improve GenAl response accuracy, reduce latency, op throughput, reduce operations costs (GenAl for M&E, WPP, Bria, Getty, L'Oréal)

- Personalized content for different audiences, (i.e. tailored advertisements, social media posts, promotional videos)
- Supercharging creatives & production teams
- Brand & campaign specific Visual, Audio and Text AI Model
- Guardrails for brand-safe creation

Use Case: Applications and Services for 3D Content Supply Consumer Interaction and Production Automation

Benefit: Evolve content production at scale, bring 3D & Al to interactive consumer engagements

(GenAI for M&E, WPP, Media.Monks, Disney Media & Entertair <u>Distribution</u>, <u>Denza</u>, <u>Brett Danton</u>, <u>Katana</u>, <u>more demos GDN</u>)

- Scaled production
- Data driven personalization

Use Case: Accelerated Data Science & Al

Benefit: Faster, lower-latency, more accurate models + algorit running on less compute with better TCO (Microsoft Bing, Taboola, Pinterest, Capitol One GTC talk)

• Analytics, Programmatic, Recommendation

Accelerating Transformation in AdTech & Digital Marketing

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
	Audience Segmentation Generative AI: Reasoning Retrieval/RAG Guardrails LLM Model Fine Tuning LLM Model Serving SLM Model Training	<u>NVIDIA Al Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u>	Accelerated Computing Solutions BlueField DPUs GPU Cloud Computing RTX visual computing platform	Databricks Meta Mistral OpenAl Snowflake
optimize	Generative AI: Reasoning Retrieval/RAG Guardrails Multimodal Model Fine Tuning Model Serving LLM Model Fine Tuning LLM Model Serving	<u>Picasso, Edify</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u>	Accelerated Computing Solutions Accelerated Networks GPU Cloud Computing RTX visual computing platform	Adobe Bria Grip.tools Haiper.ai tryPencil Synthesia Typeface.ai
y Chain,	Consumer Interactive Avatars Generative AI: Reasoning, Retrieval/RAG, Speech AI / NLP Guardrails OpenUSD Pipeline Personalization Product Configurators	<u>NVIDIA AI Enterprise</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s (<u>Audio2Face, ACE Agent, Riva</u> <u>ASR, NMT, TTS</u>), <u>Maxine</u> <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog</u> , <u>RAG</u>	Omniverse Cloud OVX GDN GPU Cloud Computing	Adobe (Adobe Open Autodesk (Autodesk talk) ElevenLabs SAP Synthesia
rithms	Predictive AI Deep KNN, GNN Hadoop, Apache Spark Generative Recommendation	NVIDIA AI Enterprise NVIDIA NIMs, NeMo Guardrails, Guardrails blog HugeCTR & blog, PyTorch, Triton, RAPIDS, RAPIDS Accelerator for Apache Spark	Accelerated Computing Solutions Accelerated Networks Data Center GPU Cloud Computing	Criteo Databricks Google Ads Snowflake theTradeDesk

Public Sector (US) Use Cases

Use Case / Transformational Conversation

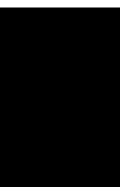
Use Case: Enhanced Command & Control, Decision **Dominance, and Enterprise Knowledge Discovery**

Benefit: Information advantage through accelerated time to insight, faster and more informed decisions, and knowledge acquisition from enterprise data

- Operational Data Analysis, Summarization, and Visualizatio
- Automated Report Generation
- Semantic search and knowledge discovery through natura language prompts and enhanced human-machine interfac

Use Case: Customized and Streamlined Public Service Delive Benefit: Provide citizens AI-assisted and customized access t government information and support services Intelligent Chatbots and Conversational Voice Assistants

- Digital public service delivery enabling government service information to be more accessible to citizens
- Automated public sector workflows that enable enhanced problem-solving & efficiency of public sector services
- Simulates human interaction with constituents
- Al Workflow: <u>Generative Al-Powered Chatbots Using RAG</u>


Use Case: Intelligent Automation - Order Management

Benefit: Generative AI for more efficient decision-making, imp citizen engagement, and enhanced service delivery

- Automation of admin tasks and document summarization
- Create content, augment datasets, model scenarios, perso services, and develop conversational interfaces
- Communications automation

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
D tion ral ace	Data Analytics / Processing Data Science Generative AI: Reasoning Retrieval/RAG Guardrails Large Language Models	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u>	Accelerated Computing Solutions DGX NeMo LLM Solution Brief DGX SuperPOD	GAI IBM Lockheed Martin Northrop Grumman Palantir Pryon Inc ServiceNow SteamPunk Unstructured.io Yurts AI
very s to ces and ed	Data Analytics / Processing Data Science Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails Large Language Models	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>Riva</u>	Accelerated Computing Solutions DGX NeMo LLM Solution Brief DGX SuperPOD	GAI IBM ServiceNow
n sonalize	Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>Riva</u>	Accelerated Computing Solutions DGX NeMo LLM Solution Brief	MosiacML Scale.Al

Use Case / Transformational Conversation

Use Case: Multi-Domain Modeling and Simulation

Benefit: Improved engagement, enhanced service delivery, eff decision-making

- Autonomous drones / robotics (<u>Vision AI tech blog</u>)
- Conversational interfaces
- Risk management, incident response, training and awarene
- Route optimization

		— NVIDIA Accelerated Computing Full-Stack —		
	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
efficient	Data Analytics / Processing Data Science Edge Computing Generative AI: Speech AI/NLP Guardrails Optimizer Engine Simulation / Modeling Virtualization	Metropolis microservicesDeepstreamNVIDIA AI EnterpriseNVIDIA NIMs, cuOpt NIMNeMo Guardrails, Guardrails blogRivaVirtual GPUOmniverse EnterpriseIsaac SIMRTX technologyRTX virtual Workstation (vWS)	Accelerated Computing Solutions Omniverse Cloud OVX RTX Systems	Brightline Interacti Dataiku Domino Data Lab e.sigma Systems Lockheed Martin Northrop Grummar Run:ai Rescale

Use Case / Transformational Conversation

Use Case: GeoSpatial and GeoINT

Benefit: Time to insight, making faster, more informed decision performance acceleration of GeoINT workflows

- Highly efficient, GPU-accelerated pre- and post-processin pipelines in cloud-scale Artificial Intelligence (AI) imaging a computer vision (CV) workloads
- Visualization and simulation of geospatial environments for digital twins, autonomous systems, sensor / signal process

Use Case: Anomaly Detection and Threat Detection Benefit: CyberOps - Proactive defense, rapid incident respons

enhanced protection against evolving cyber threats, and accel streaming ingest

- Mitigating risks, protecting sensitive data
- Data governance, data privacy
- Risk management, incident response
- Helps meet Enterprise ZeroTrust continuous Identification analysis on every user / device participating on any classifi unclassified network in jurisdiction
- Network Tap Monitoring, Continuous Authentication, Ransomware Detection – AI Workflow: <u>Digital Fingerprintir</u>

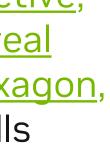
Use Case: Virtual Factory

Benefit: Develop USD-based tools, applications, and data pipe to accelerate and unlock new possibilities

(Optimizing Intralogistics blog, Talk to Your Supply Chain Data NIM, Vision AI tech blog)

- Factory planning
- Process simulation
- Robotics training
- Operations
- Al Workflow: <u>Multi-Camera Tracking</u>

NVIDIA CONFIDENTIAL INFORMATION


— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
sions, ing g and for essing	Computer Vision / Video Analytics Edge Computing Simulation / Modeling Video Streaming	<u>CV-CUDA</u> <u>NVIDIA AI Enterprise</u> <u>Deep Learning FW - PyTorch</u> <u>DeepStream</u> <u>TensorRT</u> <u>Omniverse Enterprise</u>	Accelerated Computing Solutions Omniverse Cloud OVX	Blackshark.ai Cesium Chooch Crowd.ai ESRI Helsing.ai Hexagon SI Analytics
nse, celerate on & ified /	Cybersecurity / Threat Detection Data Analytics / Processing Data Science Edge Computing Simulation / Modeling	<u>cuQuantum</u> <u>DOCA</u> <u>NVIDIA AI Enterprise</u> <u>Morpheus</u> <u>RAPIDS (cuDF, cuGraph, cuML)</u> <u>Triton</u> <u>TensorRT</u> <u>Omniverse Enterprise</u>	Accelerated Computing Solutions BlueField DPUs OVX	Crowdstrike Dataiku Domino Data Lab Graphistry Kinetica ProHawk Run:ai
pelines ta Using	Data Aggregation Digital Twin Optimizer Engine Rendering / Ray Tracing Simulation / Modeling / Design USD Data Pipeline Virtualization	Metropolis microservices (Multi-camera Tracking) NVIDIA AI Enterprise cuOpt NIM, Modulus, Virtual GPU (vGPU) Omniverse Cloud, Omniverse Enterprise, Isaac Sim, Omniverse Replicator, Reality Capture RTX technology	Accelerated Computing Solutions Microsoft Azure, Omniverse Cloud OVX RTX Systems RTX visual computing platform	Brightline Interact Cesium, Epic Unrea Engine, ESRI, Hexa Huntington Ingalls Newport News, Lockheed Martin, MAXAR, MITRE, Northrop Grumma Raytheon

<u>ctive</u>,

AIDIA 📀

Use Case / Transformational Conversation

Use Case: Air Traffic Management Systems Radar and Signa Processing

Benefit: Time to insight, making faster, more informed decision Radar and signal processing

• GPU Accelerated implementation with SciPy API

Use Case: Autonomous Systems Digital Proving Grounds **Benefit:** Enhance preparedness and operational effectiveness

Training and simulation

- Enable immersive training scenarios, realistic simulations, efficient collaboration among government personnel
- Faster enablement & skillset acquisition of resources in vir environments

Use Case: Resource Routing for Predictive Maintenance Benefit: Time to insight, making faster, more informed decision reduce cost

Improve Data Science productivity and reduce cost

- Accelerated data proc/ETL
- AI Workflow: <u>Route Optimization</u>, (i.e.,<u>Kawasaki Heavy Indu</u>

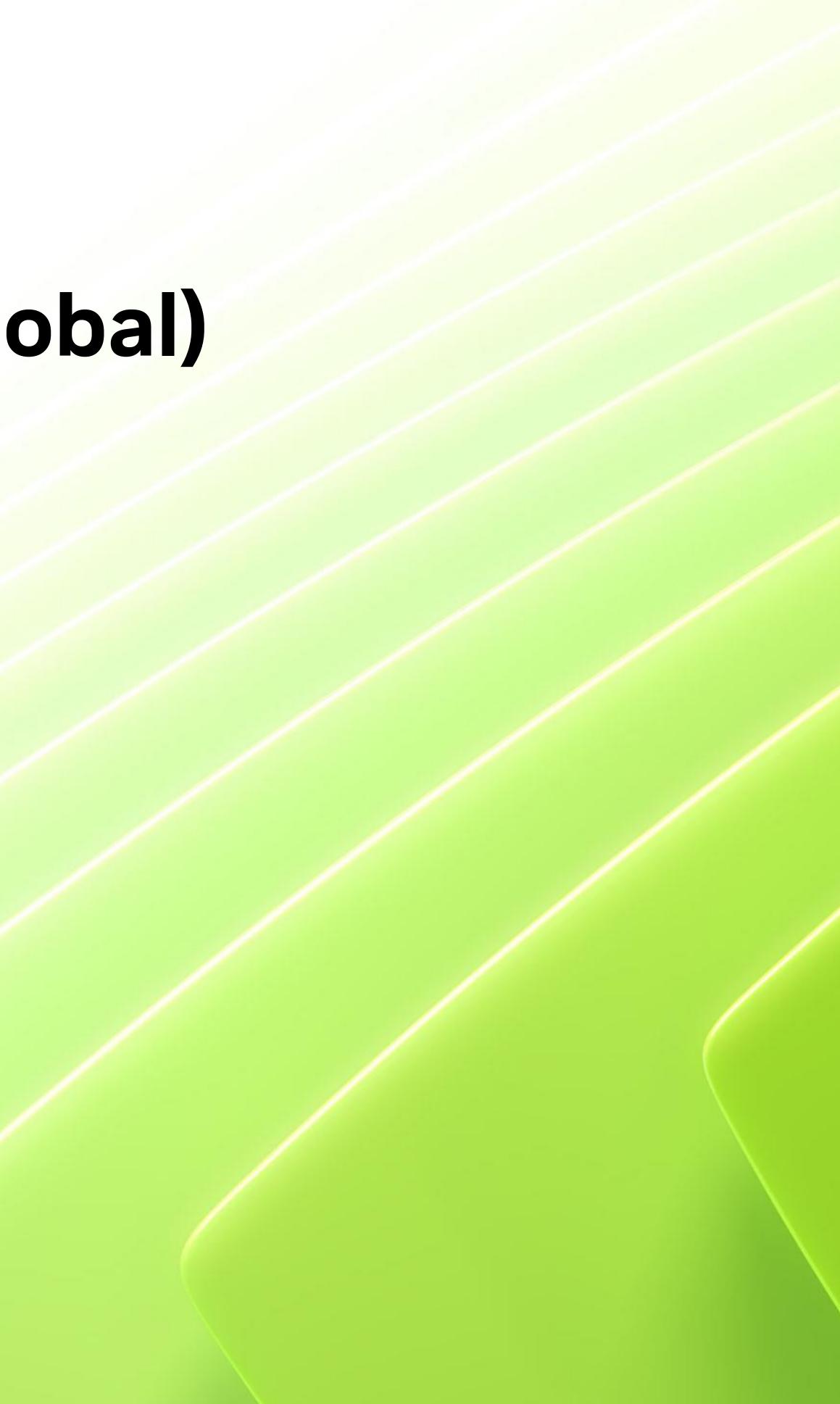
Use Case: Quantum Simulation

Quantum

Supercomputing to accelerate Quantum Computing resea

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
nal	Data Analytics / Processing Data Science Edge Computing Simulation / Modeling Video Analytics Video Streaming	<u>Aerial SDK - cuVNF</u> <u>Aerial Research Cloud (ARC)</u> <u>cuSignal</u> <u>NVIDIA AI Enterprise</u> <u>Holoscan</u> <u>Omniverse Enterprise</u>	<u>Accelerated Computing Solutions</u> <u>Omniverse Cloud</u> <u>OVX</u>	Ansys AGI e.sigma Systems HEAVY.AI Kinetica Raytheon Rescale
ss s, and virtual	AR / VR Cloud Streaming Data Aggregation Edge Computing Rendering / Ray Tracing Simulation / Modeling USD Data Pipeline Virtualization	<u>CloudXR</u> <u>Virtual GPU (vGPU)</u> <u>Omniverse Enterprise</u> <u>RTX technology</u> <u>RTX virtual Workstation (vWS)</u>	Accelerated Computing Solutions Omniverse Cloud OVX RTX Systems	MITRE OpenXR Rescale SteamVR
sions, dustries)	Data Analytics / Processing Data Science Edge Computing Optimizer Engine Simulation / Modeling	NVIDIA AI Enterprise CUDA cuOpt NIM RAPIDS (cuDF, cuGraph, cuML) RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool	Accelerated Computing Solutions Omniverse Cloud OVX	Adarga.ai Dataiku Domino Data Lab HEAVY.AI Kinetica Run:ai
earch	Quantum Computing Simulation / Modeling	<u>cuQuantum</u>	Accelerated Computing Solutions Accelerated Networks DGX SuperPOD	<u>Rescale</u>



Public Sector (Global) Use Cases

Use Case / Transformational Conversation

Use Case: Sovereign Foundation Models

Benefit: Automate and optimize public administration

Generative AI for Government / Administration, Citizen Engage and other Public Services (Sweden-Berzelius, Romania-ION)

- CitizenGPT (i.e., study showing child welfare caseworkers sp 40% of their time on documentation and administration, and 4-5 % on parent and child contact. This can improve.)
- Judicial/legal chatbots
- Compliance and regulatory assistance
- AI Workflows: Generative AI-Powered Chatbots Using RAG, Al Chatbot for Customer Service

Use Case: Radar and Signal Processing

Benefit: Enhance situational awareness, time to insight, making faster, more informed decisions; radar technology improves o detection and improves target tracking accuracy by 30-35% i difficult/obscured terrain

AI for radar and signal processing over a 5G/6G network

- Machine-to-machine communication
- Object Detection/Asset Tracking
- Infrastructure monitoring

Use Case: Digital Twins / Simulation

Benefit: Maximize productivity, accelerate training, reduce cos better decision-making for infrastructure, and decrease carbon footprint; 10% reduction in average planned downtime days for plants/heat recovery generators, saves up to \$1.7 bill year (<u>Germany-DSD</u>, <u>Optimizing Intralogistics blog</u>, <u>tech blog</u>) Al-enabled simulation that obeys the laws of physics

- City and urban planning, facility location optimization
- Climate impact modeling and simulation
- Predictive maintenance
- Al Workflow: <u>Multi-Camera Tracking</u>

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
agement spent nd only	Edge Computing Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Chat Language Generation Translation Guardrails	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG Riva	Accelerated Computing Solutions Accelerated Networks DGX NeMo LLM Solution Brief	Humans.ai MosiacML Scale Al Silo.ai Weights & Biases
king object in	Data Analytics / Processing Data Science Edge Computing Optimizer Engine Video Analytics Video Streaming	<u>Aerial, Aerial SDK - cuVNF</u> developer <u>Aerial</u> <u>Aerial Research Cloud</u> <u>6G Developer Program</u> <u>cuSignal</u> <u>NVIDIA AI Enterprise</u> <u>cuOpt NIM</u> <u>Holoscan</u>	Accelerated Computing Solutions	Ansys AGI e.sigma Systems
costs, ne of 5 oillion a g)	Data Analytics / Processing Optimizer Engine Simulation Video Analytics Video Streaming	<u>Metropolis</u> microservices (<u>Multi-camera Tracking</u>) <u>NVIDIA AI Enterprise</u> <u>cuOpt NIM</u> <u>Omniverse Enterprise</u> <u>Isaac</u>	Accelerated Computing Solutions OVX	Bentley Hexagon RSS-Hydro

NVIDIA Accelerated Computing Full-Stack —

Use Case / Transformational Conversation

Use Case: GeoSpatial and GeoINT

Benefit: Time to insight, making faster, more informed decision build disaster resilience (Germany-DFKI)

- Satellite imagery analytics (i.e., damage assessment, deforestation, maritime surveillance, food security)
- Predicting and monitoring natural disaster risks (i.e., flooding landslides, wildfires, hurricanes)
- Defense Intelligence (i.e., anomaly and threat detection)
- \$1Trillion global damage in the past 5 years

Use Case: Quantum Computing

Benefit: Accelerate quantum research, simulate quantum processing units, hybrid quantum-classical infrastructure

(Juelich Supercomputing Centre, Tech blog, Enabling Quantu Computing with AI Tech blog)

- Quantum Machine Learning
- Quantum Chemistry (i.e., drug discovery, simulate chemical reactions to discover better battery designs)
- Combinatorial Optimization

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
sions, ding,	Computer Vision / Video Data Analytics / Processing Data Science Edge Computing Simulation / Modeling Video Streaming	CV-CUDA NVIDIA AI Enterprise DALI Deep Learning FW - PyTorch DeepStream RAPIDS (cuDF, cuML) RAPIDS Accelerator for Apache Spark TensorRT Triton	Accelerated Computing Solutions	Chooch Crowd.ai ESRI Helsing.ai Hexagon North.IO RSS-Hydro SI Analytics
um	Quantum circuit simulation Error correction Hybrid quantum-classical computing platform Optimizer Engine	<u>CUDA-Q</u> <u>cuQuantum</u> <u>NVQ++</u> <u>NVIDIA AI Enterprise</u> <u>cuOpt NIM</u> <u>RAPIDS (cuDF, cuML)</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark</u>	Accelerated Computing Solutions	AWS Braket IBM Qiskit IonQ Google Quantum A (Cirq, qsim) ORCA Computing QMware Quantum Brilliance Quantum Machines Rigetti

A

Retail and CPG Use Cases

Use Case / Transformational Conversation

Use Case: Hyper Personalization and Generative AI **Benefit:** 10-20X cost savings, 2X speed up, higher revenue (State of AI in Retail and CPG)

Omnichannel - Personalization to Drive Revenue

- Personalized search Gen Al
- In-session recommendation
- Personalization / Recommendation
- Customer 360 & Segmentation
- Ad personalization Gen Al
- Virtual product advisor Gen Al

Use Case: Generative Employee Advisor

Benefit: Enhance operational efficiency & associate experience (State of AI in Retail and CPG)

Omnichannel - Intelligent Automation

- Backoffice / Corporate assistant
- Store Associate knowledge advisor
- Employee training
- Al Workflow: <u>Generative Al-Powered Chatbots Using RAG</u>

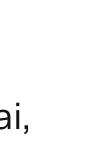
Use Case: Generative AI Shopping Advisor

Benefit: Enhance operational efficiency and customer experie (State of AI in Retail and CPG)

Omnichannel - Intelligent Automation

- Personalized customer service
- Shopping Advisor Al Workflows: Generative Al-Powered Chatbots Using RAG Al Chatbot for Customer Service

— NVIDIA Accelerated Computing Full-Stack —


	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
	Data Analytics / Processing Data Science Generative AI: Speech AI/NLP Chat Reasoning Retrieval/RAG Guardrails Recommenders / Personalization	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Transformers4Rec (real-time in- session) <u>RTX technology</u>	DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing RTX-powered AI Workstations RTX visual computing platform	Adobe Bloomreach Bria Getty Images Publicis Dataiku Verneek WPP
nce	Generative AI: Speech AI/NLP Chat Reasoning Retrieval/RAG Guardrails	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Riva, Transformers4Rec (real- time in-session)	DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing	Bloomreach, <u>Bria</u> , <u>Homee.Al</u> & <u>demo</u> , <u>Dataiku</u> , Elemental Cognition, LiveX.ai, <u>L'Oreal –</u> <u>ModiFace</u> , StateSe <u>Verneek</u> , Writer
rience <u>G</u> ,	Generative AI: Speech AI/NLP Chat Reasoning Retrieval/RAG Guardrails	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG RAPIDS Accelerator for Apache Spark, Accelerated Spark Analysis Tool Riva, Transformers4Rec (real- time in-session)	DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing	Bloomreach, <u>Bria</u> , <u>Dataiku</u> , <u>Homee.AI</u> , LiveX.ai, <u>L'Oreal – ModiFace</u> StateSet.io, <u>Verneek</u> , Writer

Use Case / Transformational Conversation

Use Case: Automated Product / Marketing Content Generati Benefit: Refine and enrich data; develop powerful personalized recommendation systems; create competitive advantage (State of AI in Retail and CPG)

- Automating content generation (text, imagery, audio, video
- Product tagging and catologing
- Personalization / Recommendation engines

Use Case: Automated Order Taking

Benefit: Improve customer experience and personalization, employee enablement (Speech AI blog)

Intelligent QSR

- Customer service and order taking digitalization
- Autonomous shopping
- Multi-modal personalization / recommendation
- Al Workflows: Intelligent Virtual Assistant, Generative Al- \bullet Powered Chatbots Using RAG, Tokkio Showcase - Custome <u>Service</u>

Use Case: Optimize End-to-End Data Science Pipeline **Benefit:** 5X faster execution, 4X lower cost

Omnichannel - Data Science workload acceleration:

- Data science team not meeting business SLAs
- Data volume growing, compute intensive, need to get time insights
- Accelerate Retailer's compute intensive Apache Spark workloads

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's	
eo)	Generative AI: Reasoning Retrieval/RAG Guardrails Recommenders / Personalization	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG Transformers4Rec (real-time in- session) Triton Picasso	DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing	Adobe Bria Getty Images Publicis WPP	
ner	Computer Vision / Video Analytics Edge Computing Generative AI: Speech AI/NLP Audio2Face, ASR, Chat, Reasoning Retrieval/RAG Guardrails Recommenders / Personalization	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>ACE NIM</u> s <u>Merlin</u> <u>NeMo Retriever, Guardrails, Guardrails blog, RAG <u>Riva</u> <u>Triton</u> <u>RTX technology</u></u>	Accelerated Computing Solutions DGX NeMo LLM Solution Brief GPU Cloud Computing OVX RTX Systems	ConverseNow.ai Fingermark.ai Grubbrr Keenon Nuvilab Ottonomy	
nely	Data Analytics / Processing Data Science	<u>NVIDIA AI Enterprise</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark, Accelerated Spark</u> <u>Analysis Tool</u> <u>RAPIDS</u> (cuDF)	<u>GPU Cloud Computing</u>	Dataiku	



Use Case / Transformational Conversation

Use Case: Loss Prevention to Avoid Theft Benefit: Reduce 1.4% shrinkage by 30-50% (Vision AI tech blog)

Intelligent Stores

- Current low accuracy of loss prevention models in self-che and aisles
- Optimize and enhance store analytics
- Al Workflows: <u>Retail Loss Prevention</u>, <u>Retail Store Analytics</u> Multi-Camera Tracking

Use Case: Organized Retail Crime Theft Prevention - Safety, Security, Compliance

Benefit: Reduce shrinkage loss and improve employee safety (Vision AI tech blog)

Intelligent Stores

- Intelligent management of organized retail crime, gang the issues, shrinkage, loss
- Optimize and enhance store analytics \bullet
- Al Workflows: <u>Retail Store Analytics</u>, <u>Multi-Camera Trackin</u>

Use Case: Store Analytics

Benefit: Improve the revenue and profitability per store (Vision AI tech blog)

Intelligent Stores

- Customer 360
- Shelf Optimization
- Planogram compliance
- Associate Productivity
- AI Workflow: Multi-Camera Tracking

NVIDIA CONFIDENTIAL INFORMATION

NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
heckout ics,	Computer Vision Digital Twin/Simulation Edge Computing	Metropolis microservices (Object Detection, <u>Multi-camera</u> <u>Tracking</u>) <u>NVIDIA AI Enterprise</u> <u>DeepStream</u> <u>Deep Learning FW – PyTorch</u> Pretrained Foundation Model <u>TAO</u> (Train, Adapt, Optimize) <u>Triton</u> <u>Omniverse Enterprise</u>	Accelerated Computing Solutions OVX	AiFi Briefcam Centific Everseen Focal Systems Grabit IronYun ProHawk Standard Al Signatrix Zippin
y , :y :heft	Computer Vision Edge Computing	<u>Metropolis</u> microservices (Object Detection, <u>Multi-camera</u> <u>Tracking</u>) <u>NVIDIA AI Enterprise</u> <u>DeepStream</u> <u>TAO</u> (Train, Adapt, Optimize) <u>Triton</u>	Accelerated Computing Solutions	AiFi Briefcam Face First ProHawk Standard Al Viisights ZeroEyes
	Computer Vision/Video Analytics	<u>Metropolis</u> microservices (Multi-camera Tracking)	Accelerated Computing Solutions	<section-header><section-header><text></text></section-header></section-header>

<mark> 📀 NVID</mark>IA.

Use Case / Transformational Conversation

Use Case: Inventory Management Optimization **Benefit:** Enormous cost savings and waste reduction (Vision AI tech blog)

Intelligent Supply Chain

- Accelerate all data science workloads and reduce cost
- Demand forecasting
- Intelligent inventory management, inventory planning
- Customer360
- Al Workflow: <u>Multi-Camera Tracking</u>

Use Case: Last Mile Delivery / Routing Optimization **Benefit:** Reduce cost conservatively by 15%

Intelligent Supply Chain - Route Optimization

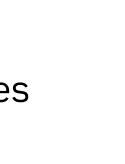
- Increase throughput with existing resources •
- Accelerate all data science workloads and reduce cost
- Last mile delivery / routing optimization
- Truck routing
- Al Workflow: <u>Route Optimization</u>

Use Case: Insider Threat Detection

Benefit: Provide complete visibility to identify, respond to three quickly

 Cybersecurity - Monitor all users, devices, and data across network

Al Workflow: Digital Fingerprinting


NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
	Computer Vision / Video Analytics Data Analytics / Processing Data Science Edge Computing	Metropolis microservices (Object Detection, <u>Multi-camera</u> <u>Tracking</u>) <u>NVIDIA AI Enterprise</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark, Accelerated Spark</u> <u>Analysis Tool</u>	DGX Cloud GPU Cloud Computing	Antuit Blue Yonder Dataiku Exotec KoiReaderTechnolo KION Group 09 Solutions OCADO Group Peak Technologies (Siena Analytics)
	Data Analytics / Processing Data Science Edge Computing Optimizer Engine	NVIDIA AI Enterprise CUDA cuOpt <u>NIM</u> RAPIDS Accelerator for Apache Spark	DGX Cloud GPU Cloud Computing	Blue Yonder FarEye FourKites o9 Solutions
nreats ss the	Cybersecurity / Fraud Detection	<u>NVIDIA Al Enterprise</u> <u>Morpheus</u>	<u>Accelerated Computing Solutions</u> <u>BlueField DPUs</u> <u>GPU Cloud Computing</u>	AiFi Briefcam Crowdstrike SureView

Robotics Use Cases

Accelerating Transformation in Robotics

Use Case / Transformational Conversation

Use Case: Robotics Generative Al

Benefit: Add flexibility and intelligence to robots, allowing rob be used in more use cases and in collaborating with humans (Intrinsic, Foxconn, Teradyne, Boston Dynamics, Covariant, Collaborative Robotics, Sanctuary AI, Unitree Robotics, tech b

- Foundation models for robotics instructions, perception, navigation, and motion control
- Accelerate Robotics Development & Simulation

Use Case: Generic Autonomous Robots

Benefit: Inference compute on the edge / on-robot (Teradyne, Gideon, idealworks, RGo Robotics, Vention, ArcBest Yaskawa Electric Corp.)

Robotics Platforms: AMRs/ ARMs/ Humanoids

- Leverage NVIDIA robotics stack that enables AI robots to deployed in a wide variety of use cases
- Pretrained models for robotics that enable inference at th / on-robot
- Providing end-to-end full-stack solution to enable AMR / A Humanoid ecosystem

Use Case: Robotics CICD Pipeline Acceleration

Benefit: Accelerate development of robots and time-to-mark (Siemens, Intrinsic, Foxconn, Teradyne, idealworks, Solomon, Amazon Robotics, Techman Robot & blog, demo, GTC talk: Dis Research, tech blog)

- Robotics Tools and Assets to accelerate application development
- Faster adoption of NVIDIA Robotics applications that accelerates development of robots and time-to-market

NVIDIA Accelerated Computing Full-Stack

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
obots to blog)	Generative AI / Generative Physical AI: Vision Foundation Models / Large Vision Models / Large Language Models, Models for Humanoids, Manipulators, AMRs Guardrails	NVIDIA AI Enterprise NVIDIA NIMs NeMo Guardrails, Guardrails blog Pretrained Models, <u>Riva</u> , <u>TensorRT</u> - Perception training <u>Omniverse Enterprise</u> Isaac Sim, Isaac Perceptor, Isaac Manipulator, project GROOT, <u>Omniverse Replicator</u>	Accelerated Computing Solutions DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing Omniverse Cloud OVX	Boston Dynamics, Boston Dynamics a Al Institute
st, o be the edge / ARM /	Edge Computing Navigation stacks Perception Pretrained Models	<u>Metropolis</u> microservices <u>NVIDIA AI Enterprise</u> Pretrained Models <u>TAO</u> (Train, Adapt, Optimize) <u>Functional Safety (IGX)</u> <u>Isaac Robot Operating System</u> <u>(ROS)</u> <u>Isaac, Isaac Perceptor,</u> <u>Isaac Nova Orin</u>	Jetson (Orin) Isaac Nova Orin IGX Jetson Thor PCIe GPUs Embedded GPUs	ODMs: ADLINK Advantech
rket , visney	Simulation / Modeling Computer Vision Optimizer Engine Physics-engine Simulation / Digital Twin / Motion Simulation / RL Synthetic Data Generation	<u>Metropolis</u> microservices <u>NVIDIA AI Enterprise</u> <u>cuOpt NIM</u> <u>Omniverse Enterprise</u> <u>Physics simulation extension</u> Isaac Tools and Assets <u>Isaac</u> SDK: <u>Isaac ROS</u> , <u>Isaac</u> <u>Sim</u> , <u>Isaac Lab</u> , <u>Isaac Perceptor</u> , <u>Isaac Manipulator</u>	Accelerated Computing Solutions GPU Cloud Computing Omniverse Cloud PCIe-A100/A30/ L40/L40S	<u>FS Studio</u>

Smart Cities and Spaces Use Cases

Accelerating Transformation in Smart Cities and Spaces

Use Case / Transformational Conversation

Use Case: Smart Safety and Security

Benefit: Keeping assets, employees and the public safe

Public safety across <u>cities</u>, <u>airports</u>, stadiums, <u>retail</u>, industrial manufacturing, railways, seaports

- Detect threats, anomalies, and intrusions with automated responses
- Real-time, predictive analytics to decrease number of incid
- Rely on safety systems to identify, classify, and alert opera teams when there are unsafe working conditions and preve accidents from occurring
- Offset the chance of fire, spills, hazardous material, unsafe environments, and slip and fall through detection software
- Worker safety and access control
- AI Workflow: <u>Multi-Camera Tracking</u>

Use Case: Operational Efficiency and Automation

Benefit: Improved operations across all Smart Spaces (Smart Traffic Systems Case Study, ITS tech blog)

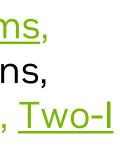
- Campus (traffic/curbside/parking, access control)
- Cities (<u>roadways</u>, public services, public safety)
- Manufacturing (optical inspection, predictive maintenance
- **<u>Retail</u> Ops (warehouse logistics, frictionless shopping, secu**
- Venues (parking, access control, public safety, retail)
- Al Workflow: Multi-Camera Tracking

Use Case: Public Agency Data Analytics and Intelligent Citize Services

Benefit: Provide citizens easy access to city data and services through LLM/RAGs

- Public Access to city data (RAG), IT Operations, Legal, Citize Services
- Digital Avatar & Chatbots
- Al Workflow: <u>Generative Al-Powered Chatbots Using RAG</u>

			Computing Full-Stack —	
	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
al d idents rations event ofe ire.	Computer Vision / Video Analytics Data Analytics / Processing Data Science Digital Twin – Synthetic Data Edge Computing Generative Al: Reasoning Retrieval/RAG Speech Al/NLP Guardrails Optimizer Engine / Route Optimization	<u>Metropolis</u> microservices (<u>Multi-camera Tracking</u> , <u>Vision Al</u> <u>tech blog</u>) <u>Jetson Platform Services</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>ACE NIM</u> s,	Accelerated Computing Solutions GPU Cloud Computing	A.I. Tech, AxxonSot Automotus, BriefC Cogniac, Drishti, DuosTech, FingerM Genetec, HelinData Herta Security, IDEMIA, Imotion Analytics, Intelexvi Ipsotek (Eviden), IronYun, ISS, K2K, Landing AI, Lumeo, Mariner, Milestone Systems Motorola Solutions Oosto, ProHawk, 1
ce) curity)		<u>cuOpt NIM,</u> <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog, RAG</u> <u>DeepStream</u> <u>Riva</u> <u>Omniverse Enterprise</u> <u>Isaac Sim</u>	<u>Jetson (Orin)</u> <u>RTX visual computing platform</u>	AiFi, Cyclope.ai, <u>De</u> <u>Ikara, IronYun, K2K</u> Mvision, <u>NoTraffic, ProHaw</u> <u>RCE Systems,</u> <u>SparkCognition,</u> <u>SmartCow,</u> Wintics
zen zen				K2K OneMeta.ai Onetera <u>Pryon Inc</u> <u>Uneeq</u> (DigitalHum



imans

🔁 🔁 🖉

Accelerating Transformation in Smart Cities and Spaces

Use Case / Transformational Conversation

Use Case: Intelligent Traffic Management

Benefit: Creating less vehicle delay time and safer roads for d and pedestrians alike

(<u>Smart Roadways</u>, Traffic Management, Toll Management, Par Management<u>, ITS tech blog</u>)

- Reduce congestion, increase vehicle throughput
- Automated tolling and traffic enforcement
- Optimize traffic-light management with edge-based comp saving bandwidth and lowering latency
- Vision AI to enable predictive models for prioritizing certai users and decreasing chances of incidents
- Al Workflow: Multi-Camera Tracking

Use Case: LVM – Video & Image Understanding

Benefit: Improved accuracy, adaptability, scalability

(<u>Vision AI</u>, <u>tech blog</u>)

- Visual Search and Recommendation
- Multi-modal integration
- Semantic understanding
- Real-time video analysis
- Enhanced content discovery
- Continuous learning and adaptation
- Al Workflow: <u>Multi-Camera Tracking</u>

NVIDIA Accel

	Workloads	NVIDIA Platforr Microservices, Appl Frameworks, Dev
drivers arking oputing, ain road	Computer Vision / Video Analytics Data Science Edge Computing Generative AI: Speech AI/NLP Guardrails Optimizer Engine	<u>Metropolis</u> microservices (Multi-camera Tracking) <u>Jetson Platform Services</u> <u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s <u>cuOpt NIM</u>
	Computer Vision / Video Analytics Data Science Edge Computing Generative AI: Speech AI/NLP, Vision Guardrails Optimizer Engine	DeepStream NeMo Guardrails, Guardr Riva Omniverse Enterprise Isaac Sim

lerated	erated Computing Full-Stack —				
ms, lication Tools	NVIDIA Accelerated Computing	Key ISV's			
s	Accelerated Computing Solutions GPU Cloud Computing Jetson (Orin)	Chooch CVEDIA IronYun K2K Nota Nota NoTraffic Sprinx Vivacity			
<u>rails blog</u>	<u>ATX visual computing platform</u>	<section-header></section-header>			



Telecommunications Use Cases

Accelerating Transformation in Telecommunications

Use Case / Transformational Conversation

Use Case: Generative AI Enhanced Customer Experience

Benefit: Reduce cost in call center and improve churn; with NV NIM, greatly reduce latency and improve accuracy of AI-genera responses, reduce volume of tokens in data preprocessing and inferencing while maintaining the same level of accuracy (AT&T, KT, T-Mobile, GTC24: KT, Verizon, Amdocs, ServiceNow)

- Call and case summarization
- Incident identification and resolution recommendation
- Custom LLM for customer service (e.g., <u>customer billing</u> LLN ensures accurate explanations to billing questions)
- Intelligent avatar for customer chatbots
- Native multilingual Interaction
- AI Workflows: Intelligent Virtual Assistant, Generative AI-Power Chatbots Using RAG, AI Chatbot for Customer Service, Tokker Customer Service Reference Workflow

Use Case: Generative AI Powered Network Operations

Benefit: Improve productivity of Technician, reduce cost of net management

(AT&T, State of AI in Telecom)

- Identify top network events in last minutes/hours
- Knowledge support for Field Technician Operations
- Identify and generate alerts from Network Log Analysis
- Recommend configuration of network designs
- Al Workflow: <u>Route Optimization</u>

Use Case: Generative AI Enhanced Cognitive Search

Benefit: Improve productivity of employees through better acc all proprietary content and current information (Telco GPT blog, State of AI in Telecom)

- Knowledge support for all work disciplines
- Intelligent avatar for customer chatbots
- Speech, Text, or Image interface

— NVIDIA Accelerated Computing Full-Stack —

	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's
IVIDIA rated nd LM	Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails Avatars	NVIDIA AI Enterprise NVIDIA NIMs, ACE NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG Riva	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Telco DGX Cloud DGX NeMo LLM Solution Brief GPU Cloud Computing OVX	Amdocs ServiceNow Jalkmap
etwork	Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails Optimizer Engine	<u>NVIDIA AI Enterprise</u> <u>NVIDIA NIM</u> s, <u>cuOpt NIM</u> <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog</u> , <u>RAG</u> <u>RAPIDS</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Telco DGX Cloud DGX NeMo LLM Solution Brief	Amdocs ServiceNow Kinetica Mavenir
ccess to	Generative AI: Reasoning Retrieval/RAG Speech AI/NLP Guardrails	<u>NVIDIA Al Enterprise</u> <u>NVIDIA NIM</u> s <u>NeMo Retriever, Guardrails,</u> <u>Guardrails blog</u> , <u>RAG</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX BasePOD for Telco DGX Cloud DGX NeMo LLM Solution Brief	





Accelerating Transformation in Telecommunications

Use Case / Transformational Conversation

Use Case: Regional / Sovereign Al Factories

Benefit: Enable Telcos to generate new revenue streams by becoming AI Factory providers as part of NVIDIA Cloud Partner Program (NCP) following NVIDIA Reference Architectures

(Japan AIST (ABCI 3.0), Scaleway, Swisscom, Singtel, Indosat, Ir blog, Reliance, Tata Group, Telenor, Telcos – Sovereign Al Factor State of AI in Telecom)

 Provide AI infra/platform to government, national enterprise startups

Use Case: Data Processing Optimization

Benefit: Speedup lowers cost with faster pipelines, faster time insight, reduces spend on Cloud, reductions in carbon footprint

(AT&T, Accelerated Spark Analysis Tool)

- Accelerated data processing in the Data Prep, ETL \bullet
- Improve Data Science accuracy of models, productivity and \bullet reduce cost

	NVIDIA Accelerated Computing Full-Stack —				
	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's	
ers India ories, ses, and	Al Generative Al: Reasoning Retrieval (RAG) Speech Al/NLP Guardrails	NVIDIA AI Enterprise NVIDIA NIMs NeMo Retriever, Guardrails, Guardrails blog, RAG Riva	Accelerated Computing Solutions Accelerated Networks Data Center		
ne to int nd	Alternative Data Merge Cleansing (dedupe, extract HTML, compress) Data Analytics / Processing Data Science Normalization	<u>NVIDIA AI Enterprise</u> <u>RAPIDS (cuDF, cuGraph, cuML)</u> <u>RAPIDS Accelerator for Apache</u> <u>Spark</u>	Accelerated Computing Solutions Accelerated Networks Data Center DGX Cloud GPU Cloud Computing	<u>Dataiku</u> <u>Domino Data Lab</u>	

Accelerating Transformation in Telecommunications

Use Case / Transformational Conversation

Use Case: Open Switching Fabric

Benefit: Improving fabric, better performance, lower latency, power utilization, open ecosystem, reduce infrastructure cost (SONiC tech blog)

- No Vendor lock in
- Flexibility in configuration
- More control over costs and power usage
- Futureproof for AI and different fabric needs

Use Case: Cloud Infrastructure Acceleration

Benefit: Creating an advanced fabric capable of isolation, acceleration, and multi use case adoption Build infrastructure like the Tier 1 CSP

- Create a tailored solution based on cloud needs.
- Futureproof for AI and supports advanced SW capabilities.

	NVIDIA Accelerated Computing Full-Stack —				
	Workloads	NVIDIA Platforms, Microservices, Application Frameworks, Dev Tools	NVIDIA Accelerated Computing	Key ISV's	
r, Lower t	Network switching/ routing Al fabric	Spectrum SDK SONIC HBN	<u>Accelerated Networks</u> <u>BlueField-2, BlueField-3 DPUs</u> <u>Spectrum Ethernet Platform</u>	SONIC - communit	
	K8s application and orchestration NVME over Fabric/TCP IPSEC Tunneling protocols	DOCA Framework DOCA Flow library	Accelerated Networks BlueField-2, BlueField-3 DPUs	3rd party Virtual Network Functions (VNF) Local security ISVs	

